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The high pressure limit of equilibrium in linear traps corresponds to the diamagnetic reduction of the confin-
ing field and the corresponding increase in the volume of flux tubes. In the gas-dynamic regime the axial losses
from a flux tube are proportional to its cross-section in the mirror throat. Thus, the axial confinement time, which
is proportional to the ratio of the flux-tube volume to its cross-section in the mirror throat, can grow significantly
in the high-pressure limit. In this paper the numerical model of the axially symmetric equilibrium based on the
coupled Grad-Shafranov and transport equations is presented. The results are in good agreement with the earlier
analytical model [A.D. Beklemishev et al., Fusion Sci. Technol. 63(1T), 46 (2013)].
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1. Introduction
Linear systems, such as open traps and field-reversed

configurations (FRC), become more and more effective,
and the use of open trap as a compact fusion reactor with
a high energy density and a relatively simple design is
promising. The gas-dynamic trap is one of the candidates
for this role. However, theoretical estimates show that in
order to achieve fusion parameters in gas-dynamic trap an
extremely long system is required [1].

The recently proposed diamagnetic confinement mode
at high beta [1] allows the significant reduction in reactor
length due to the improved confinement. The diamagnetic
trap is considered as a possible part of the GDMT program
[2].

If the plasma is pumped into a magnetic tube faster
than it flows out through the ends, the cross section of the
tube increases due to the diamagnetic weakening of the
field at the constant magnetic flux. The increase in cross-
section occurs mainly in the region of a weak vacuum mag-
netic field. The larger cross-section leads to the larger tube
volume V , while the end-loss remains almost constant. As
a result, the longitudinal particle lifetime in the flux-tube
increases, since it is proportional to the plasma volume,
indeed

τ‖ ∼ Vn
2 × nvm × S m

∼ LRvac

2vm

1√
1 − β ,

where n is the plasma density, S m and vm are the flux-
tube cross-sectional area and the flow velocity in the mirror
throat respectively, L is the distance between the mirrors,
Rvac is the vacuum mirror ratio, β = 8πp/B2

0 is the rela-
tive plasma pressure, B0 is the magnitude of the vacuum
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magnetic field in the center of the trap. Thus, in the high-
pressure limit (β→ 1), the longitudinal particle lifetime in
the magnetic tube formally tends to infinity (τ‖ → ∞).

As it was shown in Ref. [1], if one creates a patch
of quasi-homogeneous magnetic field in the vacuum mag-
netic configuration, the cylindrical diamagnetic “bubble” is
formed in this region. Inside the “bubble”, the transverse
flow is much greater than the axial loss, since the magnetic
field is extremely small there – it is almost completely dis-
placed by the plasma. There is no plasma outside due to
the large axial losses. Consequently, the transition layer –
the region of the sharp plasma pressure and the magnetic
field gradient – is formed at the “bubble” boundary. The
thickness of the transition layer λ can be estimated from
the flow continuity condition:

Φ⊥ ∼ D
n
λ
× 2πaL, Φ‖ ∼ 2 × nvm × 2πaλ

Rvac
,

Φ⊥ ∼ Φ‖ ⇒ λ ∼
√

DMLRvac

2vm
,

where Φ⊥, Φ‖ are the transverse and longitudinal plasma
flows respectively, DM = c2/4πσ is the diffusion coeffi-
cient across the magnetic field, a is the “bubble” radius. In
the same way, the particle lifetime in the “bubble” can be
estimated

τn ∼ Vn
2 × nvm × 2πaλ/Rvac

∼ τGDT
a
λ
∼ √τ⊥τGDT ,

where τGDT = LRvac/2vm is the gas-dynamic lifetime,
τ⊥ = a2/DM is the diffusion time across the magnetic field.
For fusion parameters, the transition layer λ is extremely
thin, which means that the particle lifetime in the “bubble”
increases significantly:

τn ∼ τGDT
a
λ
∼ √τ⊥τGDT � τGDT .
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Analytical equilibrium-transport model of plasma in
the diamagnetic confinement mode using the cylindrical
approximation was presented in Ref. [1]. However, one
conclusion of paper [1] was that in the high-beta limit of
plasma equilibrium there will appear non-paraxial areas,
so that the analytical theory has limited applicability. Thus,
the need of building more accurate model arose.

In this work we used the simple theoretical model of
plasma equilibrium and transport, consisting of the Grad-
Shafranov equation [3, 4] and the particle transport equa-
tion, while the temperature is considered constant. Strong
nonlinearity of the equilibrium-transport equations in the
non-paraxial case requires application of numerical meth-
ods, in particular, the finite difference method and the iter-
ative method were used in present paper.

2. Theoretical Model
2.1 Equilibrium

To describe the equilibrium, we apply the Grad-
Shafranov equation that is often used for axisymmetric
systems. The derivation of this equation in general case
is given in Ref. [3,4]. In the same way, the equation can be
obtained for the case of the axisymmetric open trap:

r
∂

∂r

(
1
r
∂ψ

∂r

)
+
∂2ψ

∂z2
= −16π3r2 dp

dψ
− 8π2

c
r jvac, (1)

where jvac is the current density in the external conductors,
p is the plasma pressure, ψ is the magnetic flux through
the 2πrdr cross section, which in cylindrical coordinates
(r, θ, z) is defined as

[B × eθ] = − 1
2πr
∇ψ. (2)

It is often assumed that the plasma is enclosed in an
ideally conducting shell. In the general case, when the con-
ducting shell does not coincide with the magnetic surface,
for the time intervals of the order of the skin-effect time the
boundary condition can be formulated as follows

ψ(r, z) = ψ0(r, z), (r, z) ∈ γs.

where γs is the curve in (r, z) space, which coincides with
the conducting shell, ψ0(r, z) is the given function deter-
mined by the external fields and the shell shape.

In present paper it is assumed that there is no conduct-
ing shell around the plasma. In this case, the boundary
conditions are set as follows

ψ(r, z)|r=0 = 0, lim
r,z→∞ |ψ(r, z)| � const < ∞.

The simplified method of setting boundary condition
for z is the periodicity of the solution:

ψ(r, z) = ψ(r, z + L).

In this case, the discrete Fourier transform is applicable,
which greatly simplifies the numerical simulation. The so-
lutions for a trap of finite length and periodic one are close
if the distance from the mirror to the center of the trap is
much greater than the radius of the plasma, i.e. L/2 � a.

Fig. 1 The cross-section of the magnetic tube in the (r, z) plane.

2.2 Transport
Right-hand side of the Grad-Shafranov Eq. (1) con-

tains the pressure profile p = p(ψ). This function is of-
ten specified by some model one, for example, found from
the approximation of experimental data. However, the dia-
magnetic confinement mode equilibrium is realized at the
limiting pressure.

The limiting pressure profile can be determined from
the transport equation, which can be derived from the law
of particle number conservation:

d
dψ

(
Φ‖ + Φ⊥

)
=

dQ
dψ

, (3)

where Φ‖ and Φ⊥ are longitudinal and transverse flows
of matter respectively, Q is the internal particle source
(Fig. 1).

The flux of the plasma across the magnetic field is de-
termined by the diffusion of the magnetic field through the
plasma. Thus, the transverse flow velocity is determined
by the conductivity of the plasma and can be found from
Ohm’s law:

1
c

[v × B] + E =
j
σ
.

It can be shown that the azimuthal component of the elec-
tric field equals to zero. Substituting the magnetic field
from Eq. (2) one can obtain

v⊥ = −2πrc
σ

jθ
∇ψ
|∇ψ|2 . (4)

In turn, the force balance

∇p =
1
c
[
j × B

]
,

together with Eq. (2), yields

jθ = 2πrc
dp
dψ

. (5)

Eventually, substituting the azimuth current (5) into the ex-
pression (4), we obtain

Φ⊥ =
∫

S⊥(ψ)

nvdS = −4π2c2

σ
n

dp
dψ

∫
γ⊥(ψ)

r2dz
Bz

, (6)

where the integration is carried out along the field line ψ =
const (Fig. 1), Bz is the z-component of the magnetic field.

2403007-2



Plasma and Fusion Research: Regular Articles Volume 14, 2403007 (2019)

The expression for the longitudinal flow through the
ends of the flux-tube has the form

Φ‖ = 2
∫

S ‖(ψ)

nvdS = 4π

rm(ψ)∫
0

nvmrdr, (7)

where rm, vm are the flux-tube radius and the flow velocity
in the mirror throat respectively.

For simplicity, we assume the electron temperature to
be constant T = const, and hence σ = const and vm =

const. Then the equation of state p = nT , together with the
expressions (6, 7), leads to the transpot equation

2vm
p

Bmz
− (2π)3DM

d
dψ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
dp2

dψ

∫
γ⊥(ψ)

r2dz
Bz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
dW
dψ

, (8)

where W = T Q is the energy source, Bmz is the value of Bz

in the mirror.
It can be assumed that the plasma is bounded by the

limiter of radius alim. Then, the plasma pressure beyond
the limiter is zero, which can formally be represented as

p(r � alim) = 0.

Note that the limiter can be cut into sections to avoid in-
ducing azimuth current in it.

The boundary condition on the axis can be set as fol-
lows

∂p
∂r

∣∣∣∣∣
r=0
= 0.

If the particle source is localized near the axis and its ra-
dius is less than as, this condition can be replaced by the
approximate one. Neglecting the longitudinal flow term,
we have

dp2

dψ

∣∣∣∣∣∣
r=as

≈ − W

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝(2π)3DM

∫
γ⊥(ψ)

r2dz
Bz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−1∣∣∣∣∣∣∣∣∣

r=as

.

This statement of the boundary condition can be especially
useful for numerical calculations, if the source size is com-
parable with the step of a discrete grid.

3. Numerical Simulation
Due to the fact that the system of the equilibrium-

transport Eqs. (1, 8) is significantly nonlinear, the appli-
cation of numerical methods is required to solve it. In par-
ticular, the finite difference method and iteration method
are used in present paper.

3.1 Diamagnetic “bubble” equilibrium
First, let us consider solution that describes the equi-

librium of the plasma in the regime of diamagnetic confine-
ment. The equilibrium distribution of the magnetic field
obtained in numerical calculations and the corresponding

Fig. 2 Distribution of the magnetic field in the (r, z) plane.
(a): vacuum magnetic configuration; (b): field with the
plasma. Black lines denote magnetic field lines.

Fig. 3 Relative plasma pressure β(r) = 8πp(r)/B2
0 radial profiles

(red and blue) and the radial shape of the particle source
q(r) (black dashed) in the central section of the trap.

vacuum configuration are shown in Fig. 2. Figure 3 rep-
resents the radial distribution of relative plasma pressure
β(r) = 8πp(r)/B2

0, where B0 is the magnitude of the vac-
uum magnetic field in the center of the trap.

As it was expected, in the center of the “bubble”,
the magnetic field is almost completely displaced by the
plasma and close to zero (B ∼ 10−3B0), and the plasma β
in turn is close to unity.

Analytical estimates of the transition layer thickness
and the “bubble” radius were obtained in Ref. [1].

λ ∼
√

DMLRvac

2vm
, a ∼ Q

2πDMn/λ
. (9)

To verify the correctness of the numerical solutions, we
investigated its scaling characteristics. For this purpose,
numerical solutions for different relationship between the
transport parameters DM and vm were constructed. In par-
ticular, Fig. 3 shows the pressure profiles for two numer-
ical solutions constructed for the same vacuum magnetic
field configuration and different ratio between the trans-
port parameters. The second β2(r) differs from the first
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Fig. 4 Distribution of the diamagnetic field in the (r, z) plane.
Red color indicates the magnetic surface corresponding
to the plasma boundary (β ∼ 0.01). The preliminary posi-
tion of the shell stabilization plates is indicated in purple.

β1(r) in that it was calculated at double the transverse trans-
port coefficient (DM2 = 2DM1) and half the longitudinal
one (vm2 = vm1/2). In turn, according to the above esti-
mates (9), the radius of the “bubble” should be the same
for both solutions (a2 = a1), and the transition layer in the
second case should be twice as thick as in the first case
(λ2 = 2λ1). It can be seen that the numerical solutions are
in good agreement with analytical scaling.

3.2 Diamagnetic field
One of the methods considered for stabilizing the

plasma in the diamagnetic trap is the stabilization by the
conducting shell. In Ref. [5], in the case of an axisym-
metric open trap, it was shown that the region of robust
shell stabilization exists for the plasma with hot ions and
β exceeding some threshold value [6]. Therefore, the opti-
mization of the shell stabilization plates position is the rel-
evant issue. The distribution of the diamagnetic field was
also calculated for this purpose. Plates should be installed
in the region of the most intense diamagnetic field close
enough to the plasma boundary. Preliminary position of
the shell stabilization plates is shown in Fig. 4. To prevent
the induction of azimuth current, the plates can be cut into
segments, as stabilization is carried out by Foucault eddy
currents.

3.3 Magnetic field corrugation
In the experiment, the vacuum magnetic field is in-

evitably modulated, since it is formed by discretely located
coils. In this connection, the study of the influence of vac-
uum magnetic field corrugation on the diamagnetic “bub-
ble” equilibrium can be useful. An example of the equilib-
rium solution in a corrugated field is shown in Fig. 5.

Based on the results of a set of numerical experiments
carried out for various corrugation parameters such as step
h and amplitude δB, the dependence shown in the Fig. 6 (a)
was constructed. In addition, the analytical approximation
of this dependence was obtained (Fig. 6 (b)):

δr
r
=
δB
B

H

(
2πr
h

)
, H (x) =

1
x

[
I1 (x)
I0 (x)

+
K1 (x)
K0 (x)

]
.

As one can see from the diagrams, the numerical and ana-
lytical results are consistent at least at a qualitative level.

Fig. 5 Distribution of the corrugated magnetic field in the (r, z)
plane. (a): vacuum magnetic configuration; (b): field with
the plasma.

Fig. 6 Dependence of the magnetic lines corrugation at the
“bubble” boundary δr/r on the corrugation of the vacuum
magnetic field δB/B and corrugation step h/r. (a): mod-
eling; (b): analytical approximation.

4. Conclusion
The MHD model for calculating axisymmetric sta-

tionary plasma equilibria in open traps was developed. Nu-
merical equilibria corresponding to the diamagnetic con-
finement mode are constructed. They are in good agree-
ment the with analytical estimates based on Ref. [1]. It is
possible to optimize the position of the shell stabilization
plates using the calculations of the diamagnetic field.

The influence of the vacuum field corrugation on the
diamagnetic confinement mode equilibrium was investi-
gated. Both numerical and analytical results were ob-
tained. One can conclude that the corrugation of the vac-
uum magnetic field leads to a proportional corrugation of
the “bubble” boundary. This allows the formulation of re-
quirements on amplitude of ripple fields in GDMT [2].
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