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In this study, a new single-shot method is developed for obtaining the parallel energy spectra of pure electron
plasmas that rotate around the machine axis by the E × B drift. When the confinement voltage is raised to the
ground level on a timescale that is comparable with the E × B rotation period, the electrons escape from the
confinement region along the magnetic field lines over the potential barrier and onto a phosphor screen in the
descending order of the energy of the electrons. This causes the phosphors to emit light at different points on the
screen along the E × B rotation trajectory depending on the electron’s energies. Further, the energy distribution
can be derived from the luminosity distribution along this trajectory by appropriately converting these positions
into their corresponding energy levels.
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Eggleston’s parallel energy analysis method for non-
neutral plasmas confined in a Malmberg–Penning trap [1]
is one of the most important experimental techniques for
determining the energy distribution function (EDF) or tem-
perature and is used in a diverse range of fields within non-
neutral plasma physics, including two-dimensional vortex
dynamics [2], beam physics [3], antimatter confinement [4]
and even recent studies revealing energetic particles gen-
eration in ion plasmas [5, 6]. However, the Eggleston’s
method requires the target plasma to be sufficiently re-
producible for determining the complete EDF because de-
structive measurement has to be repeatedly conducted to
obtain data related to the escape of particles over different
barrier potentials. Furthermore, it is difficult to uniquely
determine the EDF without prior knowledge of the func-
tion’s form (e.g., Maxwellian) because it is derived by dif-
ferentiating discrete data (the cumulative number of es-
caped particles) with respect to the energy.

To address these issues, we have developed a method
that can be directly determine the EDF from the results
of a single-shot experiment on a pure electron plasma
confined in a Malmberg–Penning trap [7], as depicted in
Fig. 1. A target pure electron plasma with a peak density
of 2 × 1014 m−3, a length of 230 mm and a 1/e2 width of
1.5 mm is rotated around the machine axis via E × B drift
with a period of tE×B = 40 µs in a uniform magnetic field
of B = 0.048 T. Figure 2 (a) depicts the plasma’s cross-
sectional electron number distribution (middle and bottom
panels). To obtain this CCD image, we have conducted
a conventional measurement by simultaneously dumping
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Fig. 1 Illustration of the E × B-rotating electron plasma in the
trap (side view). Here, φbar is the lowest barrier voltage
(creating the highest barrier potential energy −eφbar) on a
path along which the electrons can escape to the observa-
tion port.

all the electrons onto a phosphor screen by increasing the
barrier voltage φbar (Fig. 1) from the confinement voltage
of φbar

0 = −69.1 V to the ground level for a short pe-
riod (Δt0 = 0.6 µs), satisfying the condition Δt0 � tE×B

(Fig. 2 (a), upper panel). When the Eggleston’s method is
applied to this E×B-rotating plasma, the measurement has
to be repeated for many different barrier voltages manipu-
lated at this high slew rate dφbar/dt. In contrast, our single-
shot energy spectrum measurement approach involved a
slow adjustment of φbar in the same range over a period
of Δt0 = 23 µs ∼ tE×B (Fig. 2 (b), upper panel). Currently,
only electrons with parallel energies E, which consist of
kinetic energies and self-potential energies, satisfying the
condition E ≥ −eφbar could escape; further, the low-energy
electrons initially remained confined, thereby undergoing
additional E×B rotation. Therefore, the observed electron
number, which is proportional to the luminosity, exhibited
an elongated and energy-dependent spatial distribution that
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Fig. 2 Comparison between the experiments in which the
electrons were simultaneously (a) and sequentially (b)
dumped onto the phosphor screen, showing the luminos-
ity distributions on the CCD images (middle panels) and
enlarged contour maps (bottom panels) obtained while
manipulating φbar as shown in the upper panels. Note that
luminosity is proportional to the number of electrons.

Fig. 3 (a) Normalized electron number distribution Ñ(θ) ob-
served along the E × B rotation trajectory shown in the
bottom panel of Fig. 2 (b). (b) Normalized energy spec-
trum F̃ (E) derived from Ñ (θ).

followed the E × B rotation trajectory (Fig. 2 (b), middle
and bottom panels). Figure 3 (a) plots the normalized elec-
tron number Ñ(θ) as a function of the angle θ along the
trajectory of the plasma’s center. The major advantage of
our approach is that this single spatial distribution mea-
surement reflects the entire energy distribution.

Figure 3 (b) shows the EDF F̃(E), derived from Ñ(θ)
by converting the observed angle θ into the associated bar-
rier potential energy E. To calculate this, we adopt the
following iterative approach. First, we approximate the re-
maining electron’s angular velocity ω(φbar) by a suitable
decreasing function that satisfies the conditions ω(φbar

0 ) =

Fig. 4 Dependence of the E × B drift angular velocity (a) and
normalized cumulative number of electrons detected (b)
on the barrier voltage φbar.

ω0 and ω(0) = 0. Here, ω0 is the angular velocity at the
confinement voltage φbar

0 , which can easily be obtained via
the nondestructive measurement of the image current [8],
as indicated by the leftmost point in Fig. 4 (a). Second, we
obtain the observed angle θ, corresponding to the position
of the remaining electrons, as a function of φbar by inte-
grating ω(φbar) from φbar

0 to φbar, as follows:

θ(φbar) =
∫ φbar

φbar
0

ω(φbar′)
dφbar′/dt

dφbar′. (1)

Here, the slew rate dφbar/dt is calculated numerically
based on the measured φbar(t) (Fig. 2 (b), upper panel).
Third, we convert the observed Ñ(θ) into Ñ(φbar) using (1),
then calculate F̃(E) by applying the relation E = −eφbar to
Ñ(φbar). Fourth, we update ω(φbar) by taking the ensemble
average of the radial electric field acting on the electrons at
the radial position r0, as follows:

ω(φbar) =
1

r0B

∫ −eφbar

0
F̃ (E)

(
Eext

r + Eim
r

)
dE, (2)

where Eext
r is the effective electric field due to the trap po-

tential and Eim
r is the electric field due to the image charge

induced on the conducting wall [9]. Finally, we obtain
self-consistent solutions for ω(φbar) and F̃(E) by repeating
steps from two to four until successive iterations produce
the same distributions for ω(φbar) and F̃(E).

Figure 4 (a) compares our calculated ω(φbar) values
with the measured data, showing that they are in good
agreement. Here, the measured data except for the left
most point are approximately estimated from the posi-
tions of the peak luminosities observed from the experi-
ments conducted by increasing φbar to different values in
the range between the two red arrows denoted in the up-
per panel of Fig. 2 (b). To directly compare our single-shot
approach with the Eggleston’s method, we have calculated
the cumulative number of escaping electrons Ñac by in-
tegrating the F̃(E) spectrum in Fig. 3 (b). Figure 4 (b) de-
notes that the resulting Ñac values are very close to the data
obtained via the Eggleston’s method, which required more
than 40 experimental runs, clearly demonstrating both the
validity and the convenience of our single-shot measure-
ment technique.
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