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Effects of H− ion on distributions of electric potential and plasma density near the wall with the magnetic
field decreasing toward the wall are investigated analytically. In the analysis, the magnetic field is assumed to be
perpendicular to the wall, and the problem is treated as one-dimensional model. The plasma-sheath equation is
derived analytically and the potential distribution near the wall is obtained by solving the plasma-sheath equation.
The plasma density distributions are obtained from the potential distribution. It is shown that the effect of the
production amount of H− ion on plasma density distributions is large. The effect of the magnetic field profile and
the ion temperature on the distributions of electric potential and particle density are also shown.
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1. Introduction
The detached divertor plasma is characterized by the

reduction of heat load and ion influx from the core plasma
of high temperature and high density toward the diver-
tor plate through the volume recombination process. The
molecular activated recombination (MAR) is predicted
theoretically to enhance the recombination rate [1–3]. In
this process, a hydrogen negative ion (H−) produced by
the reaction of a vibrationally excited hydrogen molecule
and an electron contributes the charge exchange recombi-
nation process between the hydrogen positive ion (H+) and
the H− ion. Thus, because the recombination rate of MAR
is related to H− ion, knowing a density distribution of the
H− ion near a wall is important. The distribution of the
plasma density near the wall is related to the sheath po-
tential distribution. For unmagnetized plasma, Emmert et
al. investigated formation of the potential considering both
the plasma and the sheath regions self-consistently by us-
ing a plasma-sheath equation [4]. Sato et al. extended the
method of Emmert et al. to a case of magnetized plasma
with the magnetic field decreasing toward the wall such as
the divertor plasma [5], however the effect of the H− ion
has not been considered.

In this paper, we will study the distributions of the
electric potential and the plasma density near the wall with
the magnetic field decreasing toward the wall, where H−

ions are considered. The plasma-sheath equation is derived
analytically and the distributions of the electric potential
and the plasma density are obtained. Effects of the H−
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ion on distributions of the electric potential and the plasma
density near the wall are shown. Effects of the magnetic
field profile and the ion temperature on the distributions
are also shown.

2. Derivation of Plasma-Sheath Equa-
tion

2.1 Analytical model and basic equations
The geometry of analytical model is shown in Fig. 1.

In the analysis, walls on both sides are considered in or-
der to maintain a conservation of particles. The problem is
treated as one-dimensional model in z-direction. The elec-
tric potential φ(z) and the magnetic field B(z) are assumed
to be symmetric about z = 0 and decreases monotonically
toward the walls, and φ(z) is zero and B(z) is B0 at z = 0.
Plasma is assumed to consist of H+ ions, H− ions, and elec-
trons. It is also assumed that the magnetic field is perpen-
dicular to the walls and an effect of the magnetic presheath
is ignored. Total energies E of the H+ ion and E− of the

Fig. 1 Geometry of the analysis model.
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H− ion in the z-direction are

E =
1
2

M(υ2
⊥ + υ

2
//) + qφ(z), (1)

E− =
1
2

M−(υ2
⊥− + υ

2
//−) − qφ(z), (2)

where M and M− are the ion masses, υ⊥, υ⊥− and υ//, υ//−
are the velocities perpendicular and parallel to the mag-
netic field, q and -q are the charges of the H+ ion and the
H− ion, respectively. The subscript − denotes value be-
longing to the H− ion throughout this paper. The magnetic
moments are given by

μ = (1/2)Mυ2
⊥/B(z), (3)

μ− = (1/2)M−υ2
⊥−/B(z). (4)

The kinetic equations for the H+ ion and the H− ion in the
phase space (z, E, μ) and (z, E−, μ−) are described by

συ//(z, E, μ)
∂ f (z, E, μ, σ)

∂z
= S (z, E, μ), (5)

συ//−(z, E−, μ−)
∂ f−(z, E−, μ−, σ)

∂z
= S −(z, E−, μ−),

(6)

where σ = ±1 is the direction of the particle motion, f (z,
E, μ, σ) and f−(z, E−, μ−, σ) are the distribution functions,
and S (z, E, μ) and S −(z, E−, μ−) are the source functions.
We assume a symmetry about z = 0 for S (z, E, μ) and
S −(z, E−, μ−). Furthermore, we assume that particles are
not reflected at the wall, then the boundary conditions of
the distribution functions are f (−L, E, μ, +1) = f (L, E, μ,
−1) = 0 and f−(−L, E−, μ−, +1) = f−(L, E−, μ−, −1) = 0.

2.2 Plasma sheath equation
From Eqs. (1) - (4), the parallel velocities of the H+

ion and the H− ion are given by υ// = [(2/M){E − μB(z)
−qφ(z)}]1/2 and υ//− = [(2/M−){E− − μ−B(z) + qφ(z)}]1/2.
The energy space of the particle is divided to some re-
gions, which is based on the condition that υ// and υ//−
must be real number, that is, E − μB(z) − qφ(z) ≥ 0 and
E− − μ−B(z) + qφ(z) ≥ 0 for the H+ ion and the H− ion, re-
spectively. The particle motion depends on its energy. The
distribution functions f (z, E, μ, σ) and f−(z, E−, μ−, σ)
for σ = ±1 are obtained by integrating Eqs. (5) and (6) for
particle trajectory with the boundary conditions. The sum
of the distribution functions about σ = ±1 for each energy
region become

∑
σ

f (z, E, μ, σ)

=
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(7)
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0
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2
∫ zt−

0

S −(z′−, E−, μ−)
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dz′−, (Emin−

< E− < μ−B(±L) − qφ(±L)),

(8)

where z′ and z′− are the generation positions, zt, and zt−are
the turning points of the H+ ion and the H− ion, respec-
tively, and Emin = μB(z)+qφ(z) and Emin− = μ−B(z)−qφ(z).
As the source function, we use the expression same as the
Emmert et al. [4] and Sato et al. [5]

S (z, E, μ) = S 0h(z)
M2υ//(z, E, μ)

4π(kTi)2

× exp

{
−E − qφ(z)

kTi

}
, (9)

S −(z, E−, μ−) = S 0−h−(z)
M2−υ//−(z, E−, μ−)

4π(kTi−)

× exp

{
−E− + qφ(z)

kTi−

}
, (10)

where k is the Boltzmann’s constant, Ti and Ti− are the
temperatures, h(z) and h−(z) are the source strengths that
their average about z are normalized to 1, and S 0 and S 0−
are the average source strengths of the H+ ion and the H−

ion, respectively. The density ni(z) of the H+ ion and the
density ni−(z) of the H− ion are obtained by integrating the
Eqs. (7) and (8) over the E − μ and E− − μ− spaces as [5]

ni(z) =
2πB(z)

M2

∑
σ

∫
dE

∫
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, (11)
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∫
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υ//−(z, E−, μ−)

.

(12)

By substituting Eqs. (7) and (8) into Eqs. (11) and (12)
respectively, and interchanging the order of integrations of
them, the ion densities become

ni(z) =
4πB(z)

M2

∫ L

0
dz′

∫ ∞

Es

dE

×
∫ (E−Es)/Bs

0
dμ

1
υ//(z, E, μ)

S (z′, E, μ)
υ//(z′, E, μ)

, (13)

ni−(z) =
4πB(z)

M2−

(∫ L

0
dz′

∫ ∞

−EPB0/(B0−BP)
dE−

×
∫ (E−+qφ(z))/B(z)

0
dμ−

1
υ//−(z, E−, μ−)

S −(z′, E−, μ−)
υ//−(z′, E−, μ−)

+

∫ L

0
dz′

∫ −EPB0/(B0−BP)

−EP

dE−

×
∫ (E−+EP)/BP

0
dμ−

1
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)
,

(14)

where Ep = qφ(z), Bp = B(z), Es = qφ(z′), Bs = B(z′) for
z′ < z, and Ep = qφ(z′), Bp = B(z′), Es = qφ(z), Bs = B(z)
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for z′ > z. Where, we considered a case that the decrease
rate of the magnetic field toward the wall is smaller than
that of the potential. By substituting Eqs. (9) and (10) into
Eqs. (13) and (14), respectively and integrating them for μ,
μ− and E, E−, we obtain

ni(z) = S 0

(
πM
2kTi

) ∫ L

0
dz′I(z, z′)h(z′), (15)

ni−(z) = S 0−
(
πM−
2kTi−

) ∫ L

0
dz′−I−(z, z′−)h−(z′−), (16)

where
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× exp
{
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×
[
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− (qφ(z)−qφ(z′−))B(z′−)
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[{
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where erfc(x) is the complementary error function and
erfi(x) is the imaginary error function. As the elec-
tron density ne, we use a Boltzmann distribution ne(z) =
n0 exp[eφ(z)/kTe] for simplicity, where n0 is the electron
density at z = 0, −e is the electron charge, and Te is the
electron temperature. Substituting Eqs. (15), (16) and the
electron density into Poisson’s equation, the plasma-sheath
equation is derived

d2φ

dz2
=

n0e
ε0

exp

(
eφ(z)
kTe

)

−S 0q
ε0

(
πM
2kTi

) ∫ L

0
dz′I(z, z′)h(z′)

+
S 0−q
ε0

(
πM−
2kTi−

) ∫ L

0
dz′−I−(z, z′−)h−(z′−).

(19)

The average source strengths S 0 and S 0− are derived
from the equilibrium of the fluxes of the plasma particles
at the wall. We consider jew + jiw + ji−w = 0, where jew,
jiw, and ji−w are the current densities of the electron, the

H+ ion, and the H− ion at the wall, respectively, and given
by jew = −en0[kTe/(2πme)]1/2 exp[eφw/(kTe)] and jiw =
qS 0L from je = −(1/4)ene(z)〈υe〉 and ∇· ji = qS (z), where
〈υe〉 = {8kTe/(πme)}1/2 is the electron average velocity, me

is the electron mass, φw is the wall potential. Furthermore,
we define a rate of production amount of the H− ions to the
H+ ions to be β = S 0−/S 0. The average source strengths
S 0 and S 0− are

S 0 =
en0

qL (1 − β)
(

kTe

2πme

)1/2

exp

(
eφw

kTe

)
, (20)

S 0− =
en0β

qL (1 − β)
(

kTe

2πme

)1/2

exp

(
eφw

kTe

)
. (21)

3. Numerical Solutions
Since Eq. (19) cannot be solved analytically, it is

solved numerically. We introduce the normalized variables
such as η = (q/kTe)(φw−φ), R = B/B0, s = z/L, τ = Te/Ti,
τ− = Te/Ti−, Z = q/e, where R is the mirror ratio and
Z = 1 for the hydrogen plasma. We assume that the ions
are generated uniformly, that is, h(z) = h−(z) = 1 for sim-
plicity. The boundary conditions are dη/ds|s=0 = 0 and
η(s = 1) = 0. We assume the mirror ratio similar to the
expression used by Sato et al. [5]

R(η) = exp[−α{η − eφw/(kTe)}], (22)

where α is a positive constant and indicates a degree of de-
crease of the magnetic field toward the wall. The profile
of the normalized electric potential Φ(s) = −η for various
values of the production amount of the H− ion to the H+ ion
is shown in Fig. 2, where λD/L = 5 × 10−2 and λD is the
Debye length. We will use the value of λD/L = 5 × 10−2

in all results of this paper. As the value of β = S 0−/S 0

becomes large, the sheath width becomes large and the
sheath potential decreases. This seems that because the
large value of β means that the amount of the electrons
is small, the electrons that reach to the wall decrease and
consequently the drop of the sheath potential decreases.
The density distributions of the plasma particles are de-
rived from Eqs. (15), (16) and ne(z) = n0 exp[eφ(z)/kTe].

Fig. 2 Profile of the normalized electric potential for various
values of β = S 0−/S 0, with τ = τ− = 1, α = 0.4.
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Fig. 3 Profile of the normalized plasma densities for cases of
β = S 0−/S 0 = 0.2 and 0.4, with τ = τ− = 1, α = 0.4.

Fig. 4 Profile of the normalized electric potential for various
values ofα, with τ = τ− = 1, α = 0.2.

The profile of the plasma densities normalized by the elec-
tron density at s = 0 for cases of β = 0.2 and 0.4 are
shown in Fig. 3, where thick line, middle thick line, and
thin line express the profiles of the H+ ion, the H− ion, and
the electron, respectively. As the production amount of the
H− ion to the H+ ion becomes large, the densities of the
H+ ion and the H− ion become large. It is found that the
rate of the H− ion density to the H+ ion density near the
wall is larger than the production rate of the H− ion to the
H+ ion. For example, ni−/ni = 0.56 at s = 0.8 for the case
of β = 0.4. The profile of Φ(s) for various values of α is
shown in Fig. 4. As the decrease of the magnetic field be-
comes large, the sheath width becomes large and the sheath
potential decreases. This seems because the electrons are
easy to move along the magnetic field toward the wall more
than the ions. The profile of the normalized particle den-
sities for cases of α = 0 and 0.6 are shown in Fig. 5. It
is shown that for the case of decreasing magnetic field the
densities of the H+ ion and the electron become small and
the H− ion density becomes large near the wall compared
with the case of uniform magnetic field. The profile ofΦ(s)
for various values of τ = Te/Ti and τ− = Te/Ti− is shown
in Fig. 6, where τ = τ−. The small value of τ corresponds
to the large ion temperature. As the ion temperature be-
comes large, the potential drop becomes small. The profile
of the normalized particle densities for cases of τ = 0.5
and 2 are shown in Fig. 7. As the ion temperature becomes
large, the H− ion density near the wall becomes large. It

Fig. 5 Profile of the normalized plasma densities for cases of
α = 0 and 0.6, with τ = τ− = 1, β = 0.2.

Fig. 6 Profile of the normalized electric potential for various
values of τ = τ−, with α = 0.4, β = 0.2.

Fig. 7 Profile of the normalized plasma densities for cases of
τ = τ− = 0.5 and 2, with α = 0.4, β = 0.2.

seems that H− ions with large energy are easy to move to-
ward the wall over the potential gradient. On the whole, it
is found that the quasi-neutrality is kept in internal plasma
and ni is larger than ni− + ne near the wall.

4. Conclusions
The distributions of the electric potential and the

plasma density near the wall for the plasma that consists
of the H+ ion, the H− ion, and the electron with the mag-
netic field decreasing toward the wall are studied analyti-
cally. The plasma-sheath equation is derived theoretically
and solved numerically. As a result, for the cases of large
production rate of the H− ion and large ion temperature,
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the H− ions are much produced near the wall and it is
expected that the plasma recombination rate is enhanced
through MAR.
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