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Adaptive Particle Management (APM) method originally developped by Assous is improved for cylindrical
2-dimensional Particle-In-Cell code with 2nd-order shape function. Charge, momentum and energy for overall
particles and charge and current density on each grid are rigorously conserved during particle refinements. In
order to minimize the deformation of velocity distribution function, phase-space resampling of refinement parti-
cles was introduced. We tested our new code in Counter-Helicity Spheromak Merging simulation. Radial shift of
X-point during magnetic reconnection is observed, which is consistent with the previously reported result.
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1. Introduction
Particle-In-Cell (PIC) is a widely used simulation

technique which can simulate the non-linear dynamics
of plasma such as Field-Reversed Configuration (FRC)
[1]. Because finite number of super-particle represent six-
dimensional phase space, it can treat kinetic effect eco-
nomically. If calculation cell does not contain sufficient
number of particles, kinetic effect, (e.g. Landau damping),
cannnot be handled correctly due to low resolution of ve-
locity distribution function (VDF). Therefore, it is desired
to have more than 100 particles for each cell. However,
when density varies by an order of magnitude, one has to
put excessive number of super-particles to express those
large densities. In addition, volume element for super-
particle varies depending on its radial position in cylin-
drical geometry. Thus, these density ununiformity make
it difficult to use PIC for FRC simulation. FRC has many
advantageous features for fusion reactor including high-β,
simply connected geometry and natural diverter configu-
ration. Because kinetic effect plays important roles, PIC
can be intrinsically attractive simulation for FRC. Here, we
introduce weighted particles to resolve density ununifor-
mity problem in FRC. Because it can represent density pro-
file retaining constant number of super-particles in a cell,
weighted particles can be efficient technique to treat FRC.

In order to control the number of paricles during cal-
culation, several approaches have been proposed. One is
based on binary particle splitting and coalessing, originally
suggested by Lappenta [2]. Splitting scheme replaces a
particle with two equally weighted particles, while coa-
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lescence scheme combine two particles into one. These
scheme can conserve overall mass and either momentum
or energy in a cell. If 1st-order shape function is used,
charge density on grids is also maintained. One of advan-
tages of Lapenta’s scheme is that splitting does not modify
VDF because newly generated particles have same veloci-
ties as original. On the other hand, coalescence of particles
tends to lose high energy fraction of VDF, hence, leads to
cooling of plasma. Therefore, a lot of authors paid more
attention to coalescence scheme.

Assous et al. developped another merging method in
2D triangular cells [3]. This method does not change over-
all mass, momentum and energy in a cell. In addition,
it can also conserve grid moments, namely charge (0th-
moment) and current (1st-moment) density. Welch et al.
extend this method into 2D and 3D cells and demonstrate
2D rectangular cell case [4]. Problems of these grid mo-
ments conserved Adaptive Particle Management (APM)
method is deformation of VDF. Therefore, several works
have focused on preservation of VDF. Teunissen et al. im-
proved Lapenta’s method by choosing 2 coalescence parti-
cles close enough in phase-space using K-d trees [5]. From
the same point of view, Vranic et al. used 6-dimensional
phase-space resampling to find particle pairs [6]. How-
ever, these method cannot conserve grid moments rigor-
ously and only suitable for 1st-order shape function.

In this paper, we propose improved particle manage-
ment scheme based on Assous’s method which can be ap-
plicable to higher order shape function. Lapenta’s splitting
scheme is no longer able to conserve charge density with
higher order shape function. Thus, We apply Assous’s coa-
lescence scheme to both splitting and coalescence scheme,
although Assous’s method was originally designed for coa-
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Fig. 1 (a) Overall flow of APM algorithm. (b) Schematic view of staggered grid and 5D-resampling to classify particles in phase-space.

lescence. In order to improve preservation of VDFs and ve-
locity correlations, we also introduce phase-space resam-
pling before APM.

2. Adaptive Particle Management
APM algorithms stated here is based on the method

originally outlined by Assous et al. [3] and same method
by Welch et al. [4]. They limit their formulation with the
1st-order shape fuction. However, it is worth formulat-
ing the APM method with higher order scheme. Here we
briefly denote their method using 2nd-order shape func-
tion.

Assous’s method aims to conserve the moments on
each node. According to the previous research [3], it is
proved that overall particle’s moment in a cell will be con-
served if the moments on each node are conserved. For
example, overall mass M of N particles in a cell (M =∑N

n=1 wnmn) does not change if the grid moment Mi for i-th
grid (Mi =

∑N
n=1 wnmnλi(xn)) is conserved, where wn, mn

and xn are weight, mass and position of n-th particle. λi(xn)
is an interpolation function of particles at position xm on i-
th grid. Thus, it is sufficient to focus on the conservation
of grid moments. Figure 1 (a) summarizes the overall flow
of refinement algorithm.

Here we consider to control the number of particles
in a cell enclosed by full-integer grid preserving grid mo-
ments. Then, 2nd-order shape function can distribute parti-
cle’s weight across 3 grid points on half-integer, and 4 grid
points for full-integer grid, respectively. Needless to say,
we must use charge conservation method combined with
staggered grid to conserve charge density on each grid [7].
Staggered electric field E, magnetic fields B and current
density J are defined as shown in Fig. 1 (b). Correspond-
ing to electric field, charge density should be defined on
half-integer grid both in x and y coordinate. Therefore, it
is required to conserve charge density at 32 grid point. At
each grid node, charge density Qi on i-th grid deposited by
N particles is given by

Qi =

N∑

n=1

wnλi(xn) (i = 1, 2, ..., 9). (1)

In order to control the number of particles in a cell, let us
replace N particles with M particles at posisions xm and
weights wm. New charge density on each grid can be also
written as Qi =

∑M
m=1 wmλi(xm). For simplicity, we as-

sume the function for new weight G(x) as linear combi-
nation of λi with coefficients g j, namely, wm = G(xm) =∑9

j=1 g jλ j(xm). Then linear equations to be satisfied for
moment conservation are given by

9∑

j=1

g j

M∑

m=1

λ j(xm)λi(xm) = Qi. (2)

This equations can be denoted in matrix form as Λg = Q,
whereΛ is deposition matrix. This equations can be solved
by invertingΛ, and new particle weight wm can be obtained
from g j. It is known that this method does not ensure the
appropriate result. For example, negative weights or some
small weighted particles with unreasonaly large momen-
tum and energy might be obtained. However, we can avoid
these inappropriate reconstruction by adding slight modi-
fication in particle position.

1st-order moment (momentum or current density) on
the grid can be reconstructed in the same manner. 1st-order
moment in x direction on i-th grid Pxi is defined on full-
integer grid for x and half-integer for y. Hence, it is needed
to preserve Pxi on 4 × 3 = 12 grids. The original 1st-
moment of the particle in x on i-th grid is given by

Pxi =

N∑

n=1

wnPxnλi(xn) (i = 1, 2, ..., 12). (3)

As well as the reconstruction of weight, linear com-
binations are used to denote the function of new mo-
mentum H(x) =

∑12
j=1 h jλ j(x), where h j is a coeffi-

cient for linear combinations. Linear equations for 1st-
moment conservation have same form as Eq. (2), namely,∑12

j=1 h j
∑M

m=1 λ j(xm)λi(xm) = Pxi. Once coefficients h j are
obtained, h j gives average x-momentum for m-th particle
from pave

xm = 1/wm
∑12

j=1 h jλ j(xm). Average velocity in y
and z direcition are given in the same manner although the
number of nodes to be included depends on the position of
current. In 2D case, 12 nodes for x and y-direction and 16
nodes for z-direction are needed.

Above procedure gives new particle weight and aver-
age velocity conserving original charge and current den-
sity on grid. Particles do not have random thermal velocity
at this stage, thus, we reconstruct VDF and energy with
same manner described by Welch et al. For the detail of
reconstruction, refer to the original article. In Ref. [4],
random momentum psam

x are sampled by fitted function de-
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pending on "peakedness" of original VDF. Because veloc-
ities are sampled independently on each direction, corre-
lation between those velocity will totally dissappear. In
terms of correlation preservation, it is prefered to resam-
ple VDF from original particles. However, this method
tends to suppress the minority distribution and lead to de-
formation of VDF. We introduce the 5D-resampling (6D
for 3D PIC) for better VDF preservation. Before apply-
ing APM stated above, we divide N original particles to
be refined into sub-cells in velocity-space. Velocity space
between minimum and maximum velocity in α = x, y, z di-
recition, namely, [vmin

α , v
max
α ] is divided into NVDF sub-cells

as shown in Fig. 1 (b). All particles are classified and count
the number of particles in each sub-cells. If a sub-cell con-
tains particles more than prescribed threshold, APM will
be applied to particles in sub-cells. Because classified par-
ticles are close in phase space, it is possible to perform re-
finement without suppression of minorities. Threshold for
APM is determined by the solvability condition of linear
equations Λg = Q. The number of particles M in a sub-
cell must be larger than the number of deposition nodes.

3. Result
MHD equilibrium of FRC described in Ref. [8] is

used as initial condition for APM test. 144 and 88 par-
ticles/cell is set as upper and lower threshold for APM,
respectively. Initial weight is given as inverse of volume
element. For simplicity, 5D-resampling is not included
in this simulation. Figures 2 (a), (b) show the distribu-
tion of the number of supar-particles in a cell Nppc after
100 times APM over 1000 time steps. It is clearly seen
that super-particles near the magnetic axis decreases due
to APM. Averaged number of super-particles inside and

outside the separatrix (Nin
ppc,Nout

ppc) are (236.3, 58.9) with-

out APM, while (Nin
ppc,Nout

ppc) with APM are (114.1,109.4).
Time evolution of total number of super-particles with var-
ious APM intervals are shown in Fig. 2 (c). The more APM
routine is called, the faster the number of particles con-
verges. However, Total number of particles converges to
2.52×107 and this is equivalent to 124 particles per cell. It
is concluded that APM enables to reduce the total number
of particles while maintaining sufficient number of parti-
cles outside the separatrix.

In order to confirm grid moments and energy conser-
vation, time evolution of error of Poisson’s equation and
energy deviation are shown in Fig. 3. ΔEtotal, ΔEkinetic,
ΔEMagnetic, ΔEElectric are deviation of total, kinetic, mag-
netic and electric energy from initial respective energies.
Although APM is performed 1000 times during entire cal-
culation, error of Poisson equation remains quite low (
less than error of double precision). Because both charge
and current density must be conserved to satisfy Poisson’s
equation, it is demostrated that grid moments are well con-
served during APM. In addition, total energy is also con-
served during APM as shown in Fig. 3 (b).

Fig. 2 Colormap of the number of particles (a) without APM (b)
with APM at 10 step intervals. White cross and purple
line indicate position of magnetic axis and separatrix, re-
spectively. (c) Time evolution of total number of particles
for various APM intervals.

Fig. 3 Time evolution of (a) the number of super-particles for
electron (blue), ion (red) and total (green), (b) ∇·E−4πρ
(c) deviation of kinetic (blue), electric (purple), magnetic
(green) and total energy (red) from initial state.

Fig. 4 Calculation time for (a) only APM, (b) entire simulation.
Dashed line in (b) shows calculation time without APM.

Although it is not necessary to call the APM routine
every time step, frequent APM could be potential compu-
tational cost. This is trade off between response speed and
computational time. Figure 4 shows the calculation time
dependence on APM intervals. It is shown that total cal-
culation time for APM decreases with its interval increase.
Calculation time for less APM interval case corresponds to
nearly 5% of total calculation time.

Though Assous’s method can rigorously conserve
charge and current, it potentially modifies VDF. In order
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Fig. 5 (a) Velocity distribution function for original particles (dashed gray), with only APM (blue), with APM and 5D-resampling (green).
(b) RMSE of VDF with and without 5D-resampling. (c) 2D profiles of radial electron current density (colored) and poloidal
magnetic flux (contour lines) during CHSM for Case-O (c) and Case-I (d). Dashed cross indicates the X-point. (e) Radial position
of X-point rX for Case-O (solid blue) and Case-I (solid red). Merging completion rate ηM for Case-O (dashed blue) and Case-I
(dashed red). Green shaded region indicate the reconnection duration.

to evaluate the deformation, 500 particles in gaussian dis-
tribution are refined with and without 5D-resampling. Fig-
ure 5 (a) shows VDF deviates from original shape after
APM. Without 5D-resampling, distribution function tends
to lose higher velocity (minority) fraction, while APM
tends to increase majority fraction (vy ∼ 0). Therefore,
distribution deforms to increase its peakedness. On the
other hand, suppressing of minority fraction cannot be seen
with 5D-resampling. Root Mean Squared Error (RMSE) in
Fig. 5 (b) clearly shows 5D-resampling APM causes only
slight deformation of VDF. It is effective to suppress mi-
nority velocity component to disappear via APM.

Developed Particle-In-Cell code is used to simulate
FRC formation by Counter-Helicity Spheromak Merging
(CHSM). CHSM is one of formation methods of creating
FRC from two separately generated spheromaks via mag-
netic reconnection. There exist two types of CHSM, called
as “Case-I” and “Case-O”, distinguished by combination
of poloidal and toroidal magnetic field or polarity of he-
licity as described in Figs. 5 (c), (d). We set two sphero-
maks with opposite toroidal field and performed weighted
particle-In-Cell simulation. It is observed that two initially
separated spheromaks gradually approach and relax into
a FRC anihilating toroidal field. During magnetic recon-
nection, X-point movement is observed depending on its
polarity of helicity. In Case-O, Outward X-point move-
ment and inward radial electron current is found as shown
in Fig. 5 (c). On the contrary, X-point depicted as dashed
cross in Fig. 5 (d) moves radially inward, and the oppo-
site electron radial current density can be seen in Case-I.
Time evolution of radial position of X-point rX and merg-
ing completion rate ηM are shown in Fig. 5 (e). It shows
X-point movement was direct consequence of magnetic
reconnection. This is consistent with previously reported
phenomenon both in experiment [9] and Hall-MHD simu-
lation [10].

4. Conclusion
In summary, Adaptive Particle Management algorithm

for FRC was developped and demonstrated. We extended
Assous’s APM algorithm to higher order shape function.
It is confirmed that charge and current density on each
node are rigorously conserved during APM with 2nd-order
shape function. It is shown that total number of particles
converges at some levels in later time. Moreover, the re-
sponse speed depends on the frequency of the manage-
ment.

PIC simulation of CHSM was performed for the val-
idation of the new algorithm. Previously reported X-point
movement were observed depending polarity of the helic-
ity. It is also confirmed that the deformation of VDF is sup-
pressed with newly introduced 5D-resampling technique.
It is concluded the number of particles in a cell can be con-
trolled with this APM algorithm.
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