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An Explosive Scaling Law for Nonlinear Magnetic Reconnection
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The nonlinear phase of magnetic reconnection is investigated by numerically solving a gyrofluid model. The
scaling law for the explosive reconnection rate, which has been recently derived for an ideal two-fluid model [Hi-
rota et al., Phys. Plasmas 22, 052114 (2015)], is found to consistently hold when either the ion-sound gyroradius
ρS or the ion gyroradius ρi is comparable to the electron skin depth de, even in the presence of finite resistivity
η. In this explosive phase, a local X-shaped current layer is spontaneously generated, in which the reconnection
speed is closely related to the macroscopic shape of the layer and is almost independent of the layer width. The
reconnection speed is therefore insensitive to the size of the microscopic scales, ρS, ρi, de and η. On the other
hand, in the cold plasma limit, where ρS = ρi = 0, the intermittent acceleration of the reconnection speed is
caused by the plasmoid instability. This also seems to be explosive on average, but the rate always falls below
the explosive scaling law. The reconnection time extrapolated from this scaling law is shown to be fast enough to
explain the time scale of solar flares.
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1. Introduction
Fast magnetic reconnection in a collisionless plasma

has drawn considerable attention from plasma physi-
cists for many years. In resistive magnetohydrodynamics
(MHD) theory, the Sweet-Parker model [1] provided a ba-
sic understanding of steady reconnection, but the estimated
reconnection time is too slow to explain solar flares. In
subsequent investigations, the elongated current sheet of
the Sweet-Parker model was found to be unstable to, what
is now called, the plasmoid instability, when the resistivity
is sufficiently small [2, 3]. Many investigations [4–6] cur-
rently expect that subsequent unsteady or stochastic pro-
cesses may account for fast magnetic reconnection.

On the other hand, it is also suggested that the resistive
MHD model needs to be extended to more general two-
fluid or gyrofluid model for the purpose of studying col-
lisionless reconnections, in which the microscopic scales,
such as the skin depth and the gyroradius, can be more im-
portant than resistivity. The Global Environment Modeling
(GEM) Reconnection Challenge [7] reports that the recon-
nection speed is significantly enhanced when the Hall cur-
rent term (∝ di, the ion skin depth) is included. In the con-
text of magnetized plasma models in a strong guide field,
the effects of the ion-sound gyroradius ρS =

√
βedi and the

ion gyroradius ρi =
√
βidi lead to similar enhancements of

the reconnection speed. (Here, βe,i are the electron’s and
ion’s beta values). Many simulation results [8–13] confirm
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that when ρS and ρi are comparable to the electron skin
depth de, the reconnection rate is nonlinearly accelerated
by an X-shaped current layer (which is only visually sim-
ilar to the Petschek model [14]). Using an ideal two-fluid
model (de = ρS � 0, ρi = 0, and no resistivity η = 0),
our recent work [15] has shown that this X-shaped layer is
actually localized around the reconnection point and that
this spatially concentrated reconnection is responsible for
persistent nonlinear acceleration which, moreover, appears
to be explosive.

In this paper, we numerically solve a gyrofluid model
that includes the four microscale parameters (de, ρS, ρi, η),
and we investigate whether or not the reconnection be-
comes explosive, by focusing on its nonlinear phase. Be-
cause of the limitation of computational power, it is not
possible to survey every combination of the four parame-
ters (de, ρS, ρi, η). Nevertheless, we show that almost the
same explosive reconnection speed as found in Ref. [15] is
obtained whenever a local X-shaped layer emerges, even
though the layer width varies, depending on the values of
the microscale parameters. This explosive scaling law may
therefore be universal in that it is insensitive to the mi-
croscale physics.

In the limit of a cold plasma, where ρS = ρi = 0,
the plasmoid instability occurs instead of the generation
of a single X-shaped layer. While the reconnection speed
does fluctuate stochastically, we show below that it tends
to follow the explosive scaling law. Hence, reconnection is
likely to be explosive on average even in this case.

Finally, we predict the reconnection (or collapse) time
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of the plasma by applying this explosive scaling law to a
system of arbitrary size. We show that the estimated time
for reconnection is fast enough to explain the observed
time scale of solar flares.

2. Magnetized Low-β Plasma Model
We consider the following reduced gyrofluid model in

Cartesian coordinates [10, 16];

∂ne

∂t
+ [φ, ne] = [ψ,∇2ψ], (1)

∂(ψ − d2
e∇2ψ)

∂t
+ [φ, ψ − d2

e∇2ψ]

= ρ2
S[ne, ψ] + η∇2(ψ − ψeq.), (2)

ne − ni0 =
∇2

1 − ρ2
i ∇2

φ, (3)

where u = ez × ∇φ(x, y, t) is the (ion’s) velocity field,
B =

√
μ0mini0∇ψ(x, y, t) × ez + B0ez is the magnetic field

and [ f , g] = (∇ f × ∇g) · ez (here, μ0 is the magnetic per-
meability, and mi is the ion mass). We assume that the ion
density ni0, ion and electron temperatures Ti,e and guide
field B0 are spatially uniform. Equations (1) through (3)
can be derived approximately for a low-β plasma, where
β = μ0ni0(Ti + Te)/B2

0 � 1, while retaining the scales

of the ion-sound gyroradius ρS =

√
miTe/(e2B2

0) and ion

gyroradius ρi =

√
miTi/(e2B2

0) (e is the electron charge).

The electron skin depth de =
√

me/(μ0n0e2) (where me is
the electron mass) and the magnetic diffusion coefficient
η represent the effects of electron inertia and electrical re-
sistivity, respectively; both enable magnetic reconnection.
We remark that the Padé approximation has been used in
Eq. (3) to simplify the gyro-averaging operator. Refer-
ences [12,17,18] discuss more general two-fluid and gyro-
fluid models in the context of magnetic reconnection.

In the resistive dissipation term in Ohm’s law (2), we
have artificially subtracted ψeq. from ψ, so that the equilib-
rium field ψeq. does not change during the lengthy linear
phase of the resistive tearing instability. We specifically
choose the equilibrium state to be given by

φeq. ≡ 0, ψeq.(x) = ψ0 cos
2πx
Lx

, (4)

in a domain [−Lx/2, Lx/2] × [−Ly/2, Ly/2] that is periodic
in both the x and y directions. For a linear perturbation
with a wavenumber ky = 2π/Ly in the y direction, the tear-
ing index Δ′ can be calculated analytically (see p.103 of
Ref. [19]). The result may be written as a function of the
aspect ratio a = 2π/kyLx = Ly/Lx;

Δ′(a) =
4π
Lx

√
1 − a−2 tan

[
π

2

√
1 − a−2

]
. (5)

When Ly/Lx > 1, the equilibrium state is linearly unsta-
ble to the tearing mode with the wavenumber ky. Then
magnetic reconnection occurs at x = 0,±Lx/2 where By

becomes zero. We denote by ε(t) the displacement of
the strongest magnetic field lines initially located at x =
±Lx/4; these two field lines behave in a similar way be-
cause of the parity of the tearing mode. This quantity ε(t)
will be regarded as the amplitude of the tearing mode as
long as the mode pattern is coherent.

The linear growth rate γL of the tearing instability
has been well-investigated by the asymptotic matching
method [20]. When it becomes a maximum with respect to
ky, we typically find δinΔ

′ ∼ 1, where δin is the width of the
(outermost) inner layer, which depends on (de, ρS, ρi, η).
Since we have δin � Lx in many situations, we are in-
terested in the case of large Δ′ (∼ 1/δin � 1/Lx) or, equiv-
alently, large aspect ratio a, and hence we may use the ap-
proximation,

Δ′(a) � 16
a2

Lx
for a � 1. (6)

In general, one finds exponential growth ε(t) ∝ eγLt

only in the linear phase; that is only when ε is much smaller
than δin or any other microscopic scale. For small aspect
ratios, where Δ′ � 1/δin, the growth of ε is likely to be sat-
urated below the level of δin (a survey of the dependence on
Δ′ is given in Ref. [15] for an ideal two-fluid case). Con-
versely, in the large-Δ′ case (Δ′ � 1/δin), the growth will
not saturate, since there is no stabilizing mechanism in our
problem. In fact, many simulation results confirm an accel-
eration of the growth rate in the strongly nonlinear phase,
where ε > δin. Generally speaking, two types of nonlin-
ear phases are observed in the simulations, depending on
whether or not the effects of the finite gyroradii ρS and ρi

are negligible. In the next section, we discuss these fea-
tures in detail, by reproducing them with our numerical
code.

3. Numerical Observation of Nonlin-
ear Phases
Our numerical code directly solves Eqs. (1)-(3) us-

ing Fourier spectral methods in both the x- and y-
directions and using forth-order Runge-Kutta method for
time stepping. In the following, we use the normalization
(d̂e, ρ̂S, ρ̂i, ε̂) = (de/Lx, ρS/Lx, ρi/Lx, ε/Lx) for brevity.

First, if we include only electron inertia d̂e = 0.01
in the cold and collisionless limit (ρS = ρi = η = 0),
the width of the inner layer is simply δin � de. Figure 1
shows that elongation of the current sheet occurs in the
early nonlinear phase, where ε̂ = 0.01 to 0.03, in agree-
ment with Ref. [21]. However, we find that such the Sweet-
Parker-like current sheet becomes secondarily unstable to
the plasmoid instability in the strongly nonlinear phase,
where ε̂ � 0.04. Smaller magnetic islands (corresponding
to plasmoids) are generated intermittently and then ejected
up and down along the y-axis. Although this plasmoid
instability is well-known to occur in resistive MHD sim-
ulations [2, 3], it also seems to be true for collisionless
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Fig. 1 Contours of ψ (solid lines) and current distribution ∇2ψ (color) for a case with d̂e = 0.01, ρS = ρi = η = 0 and Ly/Lx = 5.24
(Δ′ = 427/Lx), where the displacement ε̂(t) grows monotonically and the snapshots are taken at times when ε̂ = 0.01 to 0.05.

Fig. 2 Contours of ψ (solid lines) and current distribution ∇2ψ (color) for the case d̂e = ρ̂S = 0.01, ρi = η = 0 and Ly/Lx = 5.84
(Δ′ = 534/Lx), where the displacement ε̂(t) grows monotonically and the snapshots are taken at times when ε̂ = 0.01 to 0.05.

Fig. 3 Contours of ψ (solid lines) and current distribution ∇2ψ (color) for the case d̂e = ρ̂i = 0.01, ρS = η = 0 and Ly/Lx = 5.84
(Δ′ = 534/Lx), where the displacement ε̂(t) grows monotonically and the snapshots are taken at times when ε̂ = 0.01 to 0.05.

reconnection (de � 0, η = 0). Our previous work [22]
(and Ref. [21] as well) overlooked this secondary instabil-
ity because the resolution for the y-direction was up to 200
Fourier modes, and we imposed a numerical viscosity to
stabilize the finite-difference scheme employed in the x-
direction. In the present paper, we obtain the result shown

in Fig. 1 using a resolution of 4096×4096 and a similar on-
set of plasmoid instability is observed even when the reso-
lution is increased to 8192 × 8192.

However, the nonlinear phase looks totally different
when either ρS or ρi is comparable to de. Figure 2 shows
the case of d̂e = ρ̂S = 0.01 and ρi = η = 0 (i.e., hot
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electrons βe = me/mi and cold ions βi = 0). In this case,
we find an X-shaped current sheet to be generated nonlin-
early, and we obtain an accelerated reconnection, as found
in earlier works [8,11,12]. Our recent work [15] shows that
this X-shaped layer emerges locally near the reconnection
point (as shown in the panel with ε̂ = 0.02 in Fig. 2) and
then expands rapidly and explosively.

Figure 3 shows the case of d̂e = ρ̂i = 0.01 and
ρS = η = 0 (i.e., hot ions with βi = me/mi and cold elec-
trons with βe = 0). A similar situation has already been
studied in Ref. [10, 12], and the effect of ρi was found to
be similar to that of ρS so far as the nonlinear reconnection
rate is concerned. Our simulation results shown in Fig. 3
additionally confirm that the X-shaped layer is again local-
ized in the nonlinear phase. The roles of ρi (Fig. 3) and
ρS (Fig. 2) are slightly different, in that the small X-shaped
layer shows up a little earlier and the layer width is a little
wider in the former case than in the latter.

4. An Explosive Scaling Law
In order to distinguish whether magnetic reconnection

is explosive or not, we first define a theoretical model that
serves to illustrate the situation.

As a simplified picture, let us consider the equation of
motion:

ẍ = −∇U(x), (7)

for a mass point x(t) in a potential U. Suppose that
U has a linearly-unstable equilibrium point xe, at which
∇U(xe) = 0. In this case, a linear instability will occur
if the displacement ε(t) = |x(t) − xe| is sufficiently small
at t = 0. As t increases, ε continues to grow as far as U
decreases. Using the energy conservation law, the veloc-
ity at a position x is determined by the potential change
δU(x) = U(x) − U(xe) as follows.

ε̇ = |ẋ| = √−2δU(x). (8)

The growth of ε is mathematically said to be explosive
if it diverges (ε → ∞) in a finite time. A typical example
is given by

ε̇ =
ε s

τε s−1
0

, ε(0) = ε0, (9)

which has an explosive solution if s > 1,

ε(t) =

(
1

1 − (s − 1)t/τ

) 1
s−1

ε0. (10)

For this case, no matter how small the initial condition ε0

is, ε blows up in a finite time ∼ τ (unless s is too close to 1).
In reality, however, ε cannot become infinity and the explo-
sive growth often terminates because of finite system size
L or finite values of the free energy U(xe). Consequently,
it is more realistic to assume that there is some character-
istic small scale d that separates the linear and nonlinear

phases:

−δU(ε)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

d2

2τ2
L

(
ε

d

)2[
1+O

(
ε

d

)]
for ε�d

d2

2τ2
N

(
ε

d

)2s
[
1+O

(
d
ε

)]
for d�ε�L

,

(11)

where again s > 1. Then, the linear instability ε ∝ et/τL oc-
curs initially when ε � d. After ε exceeds d, the amplitude
grows explosively until it is eventually bounded by the sys-
tem size L. This nonlinear phase is observed as an abrupt
collapse of the equilibrium state into a lower energy state.
This event occurs in a finite time ∼ τN no matter how much
smaller d is than L (although τN may not be independent
of d).

Now, let us apply this example of explosive behav-
ior to the case of magnetic reconnection. We accom-
plish this by replacing the small scale d by the inner layer
width δin and the potential U by the magnetic energy W =
(1/2)

∫ |∇ψ|2dxdy. The following discussion is a brief re-
view of our previous theory [15], but here we greatly sim-
plify the logic by ignoring the microscale physics inside
the current layer.

First, we assume that the nonlinear acceleration
phases, such as shown in Fig. 2 and Fig. 3, can be schemat-
ically modeled as shown in Fig. 4. We take the X-shaped
current layer (denoted by the red lines) to be localized in
a box with dimensions [−σ,σ] × [−ly, ly], and we assume
the layer width (presumably ∼ δin) to be negligible in the
nonlinear phase: δin � ε ≤ σ � Lx/4.

We also assume that the external solution at x ∈
[−Lx/4,−σ] ∪ [σ, Lx/4] can be approximated by ψ =

ψeq. + ψL where ψL = −ξ · ∇ψeq. is the linear ideal MHD
eigenfunction, as in the conventional linear tearing theory,
and the displacement field ξ is normalized by ε = |ξ(x =
±Lx/4, y = 0)| in accordance with the definition of ε. How-
ever, the effective wavelength Λy of the displacement is
allowed to be less than Ly so as to represent a local re-
connection (that is, the shaded areas in Fig. 4 are almost
immobile). For given ε and Λy, we can determine σ by
using Δ′,

σ = ε

(
2
σΔ′
+ 1

)
, Δ′ � 16

Λ2
y

L3
x
, (12)

where we have used Eq. (6), assuming Λy/Lx � 1. The
incompressibility of the external solution requires

σ

ε
=
Λy

4ly
. (13)

By assuming Λy/ly � 1, these relations lead to

σ � L3
xly

2Λ3
y

� 1
2

⎛⎜⎜⎜⎜⎝ L3
x

8l2y

⎞⎟⎟⎟⎟⎠1/4

ε3/4. (14)

The most efficient decrease of the magnetic energy
(i.e., the potential energy) is expected when ψ becomes
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nearly flat (or constant) inside the magnetic island. The
magnetic energy in the region [−σ,σ] is then negligible
to leading order. In other words, the magnetic energy that
flows into this area disappears due to magnetic reconnec-
tion. We can estimate this decrease of magnetic energy by
using only the external solution at x = ±σ,

δW = − Λy
2

[
ψLψ

′
L

∣∣∣ x=σ
y=0
− ψLψ

′
L

∣∣∣ x=−σ
y=0

]
(15)

= − Λyτ−2
H

σ3

2
σΔ′ + 1

(16)

� − 4lyτ
−2
H σ3, (17)

where τ−1
H = ψ

′′
eq.|x=0 = (2π/Lx)2ψ0.

Since the inflow velocity (in the x-direction) toward
the box region [−σ,σ] × [−ly, ly] is σ̇, the outflow veloc-
ity (in the y-direction) is expected to be σ̇ly/σ according
to the incompressibility of the flow (see Fig. 4). The ki-
netic energy of the outflow within the magnetic island is
therefore roughly given by

δK � 2l2yLy
σ̇2

σ
. (18)

Using the energy conservation law δK + δW = 0, we can
calculate σ̇ as

σ̇ �
√

2
Lyly

τ−1
H σ2, (19)

which indicates that the smaller the value of ly, the faster
magnetic reconnection occurs. However, ly must satisfy
σ � ly in order for (14) not to contradict the assumption
Λy/Lx � 1. Thus, we expect ly to be of the order of ly ∼
Lx, which is indeed plausible from Fig. 2 and Fig. 3. The

Fig. 4 Model of local reconnection (solid lines: magnetic field
lines, dashed lines: streamlines, red lines: current layers).

explosive growth (19) of σ can then be rewritten in terms
of ε and δW as

ε̇

Lx
� τ−1

H

(
Lx

Ly

)1/2 (
ε

Lx

)7/4

, (20)

− ˙δW
W0

� τ−1
H

(
Lx

Ly

)1/6 (−δW
W0

)4/3

, (21)

where δW is normalized by the initial magnetic energy
W0 = W |t=0 = τ

−2
H L3

xLy/(16π2).

5. Comparison with Simulation Re-
sults
In this section, we investigate how well the theoretical

predictions (20) and (21) agree with the numerical results.
In Fig. 5, we compare cases with several different val-

ues of de and ρS, keeping ρi = η = 0 and Ly/Lx = 5.84 (the
aspect ratio is chosen such that the maximum linear growth
rate appears when d̂e = ρ̂S = 0.005). As already shown in
Ref. [15], the transition from the linear phase ˙̂ε = γLε̂ to
the nonlinear one (20) is visible in Fig. 5 (a) when ε ex-
ceeds de and ρS. The scaling law (21) for δW also agrees
well, as shown in Fig. 5 (b). While the linear growth rate
does depend on the sizes of de and ρS (γL ∼ τ−1

H d̂2/3
e ρ̂5/6

τ

where ρ2
τ = ρ

2
S +ρ

2
i according to the linear theory [12]), the

explosive nonlinear phase hardly depends on them at all,
in agreement with our theory (20).

The effect of resistivity on a case with d̂e = ρ̂S = 0.005

Fig. 5 Explosive scalings for (a) growth of ε and (b) decay of
magnetic energy W, when ρi = η = 0 and Ly/Lx = 5.84
(Δ′ = 534/Lx).
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Fig. 6 Explosive scalings for (a) growth of ε and (b) decay of
magnetic energy W, when d̂e = ρ̂S = 0.005, ρi = 0 and
Ly/Lx = 5.84 (Δ′ = 534/Lx).

and ρi = η = 0 is shown in Fig. 6. In general, let γL0 be the
linear growth rate in the collisionless limit η = 0. One can
expect the resistivity to remain negligible so long as the
electron-ion collision time τe = d2

e/η is much longer than
1/γL0. On the contrary, if η is so large that τe < 1/γL0,
the situation would become more like a resistive (or col-
lisional) reconnection. Figure 6 compares the results of
the relatively resistive cases, η = 2d2

eγL0 and 4d2
eγL0, with

that of the collisionless case η = 0. The linear growth rate
γL0 = 10.5d̂2/3

e ρ̂5/6
τ /τH for η = 0 is indeed enhanced by re-

sistivity. In Fig. 6, the threshold of the transition is elevated
by increasing η, probably because the resistive layer width
δη [∼ (τHη/ky)1/3 in the large-Δ′ limit] becomes wider than
de = ρS. For these cases, δη serves as δin. However, it is
remarkable that the nonlinear phase (where ε > δin) ends
up with the same reconnection speed as the collisionless
case η = 0. We have similarly observed a localized X-
shaped layer even in the presence of resistivity. Conse-
quently, the widening of the current layer width ∼ δin due
to resistivity does not seem to affect the reconnection speed
in the nonlinear phase. Further, when ε reaches Lx/4 in the
case with η = 4d2

eγL0, the magnetic energy decreases by
32.7%, or δW = −0.327W0. At this time, the kinetic en-
ergy is numerically calculated to be δK = 0.314W0 and the
other nonideal-MHD energies, EC = (1/2)

∫
d2

e |∇2ψ|2dxdy
and ET = (1/2)

∫
ρ2

S|∇2φ|2dxdy, are found to be small
δEC = δET = 0.006W0. The total dissipated energy then
amounts to δ(K + W + EC + ET) = −0.002W0. The ideal

Fig. 7 Explosive scalings for (a) growth of ε and (b) decay of
magnetic energy W, when η = 0 and Ly/Lx = 5.84 (Δ′ =
534/Lx).

MHD energy conservation law, δK + δW � 0, thus seems
to be well satisfied, even for rather large values of η.

In Fig. 7, we show the results for a hot-ion case with
de = ρi � 0, ρS = 0. These are plotted over the previous
hot-electron case with de = ρS � 0, ρi = 0, keeping η = 0.
As already remarked in comparing Fig. 3 with Fig. 2, the
linear-to-nonlinear transition occurs a little earlier in the
hot-ion case. Nevertheless, Fig. 7 shows that the reconnec-
tion speed in the nonlinear phase again agrees well with
the scalings (20) and (21). In particular, the reconnection
speed does not depend on whether electrons or ions are hot.

In the same manner, we have also investigated the re-
connection speed in the cold plasma limit ρS = ρi = 0.
In this case, intermittent acceleration occurs due to the
plasmoid instability (see Fig. 1). Our definition of ε is no
longer appropriate for such a stochastic nonlinear phase,
since it is supposed to parameterize only the coherent
growth of a single tearing mode (or a single magnetic is-
land). Hence, we show only the decay rate of the magnetic
energy in Fig. 8, for the cases with η = 0, 2d2

eγL0, 4d2
eγL0

fixing d̂e = 0.01 and Ly/Lx = 5.24 (where γL0 = 8d̂2/3
e /τH

for η = 0). While the decay rate does fluctuate in the
nonlinear phase, we find that reconnection tends to be
faster than in the linear phase, though always somewhat
more slowly than indicated by the scaling law (21). Recall
that the plasmoid instability generates “bubbles” of mag-
netic islands and multiple reconnection points, as shown in
Fig. 1, each of which resembles the local reconnection pro-
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Fig. 8 Explosive scaling for decay of magnetic energy W, when
d̂e = 0.01, ρ̂S = ρ̂i = 0 and Ly/Lx = 5.24 (Δ′ = 427/Lx).

cess discussed in Sec. 4. Since the magnetic energy consid-
ered here is analogous to the potential energy, it is not sur-
prising that some secondary instability may drive the sys-
tem to a lower energy state, which is demonstrated to exist
in Sec. 4. The reconnection rate shown in Fig. 8, which re-
sults from the plasmoid instability, seems to approach the
scaling law (21). This is presumably because the plasmoid
instability actually triggers local reconnections, releasing
magnetic energy more efficiently than the Sweet-Parker-
like global reconnection.

6. Prediction of Reconnection Time
Suppose that the reconnection speed makes a transi-

tion to that given by Eq. (20) after ε exceeds the inner layer
width δin. Then we can estimate the reconnection time (or
the collapse time) as

τrec ∼ τH(Ly/Lx)1/2(Lx/δin)3/4, (22)

according to the discussion following (9) and (10).
Let us apply this scaling law to the parameters of a

solar flare. We choose the density and temperature of the
corona region as n = 1014 m−3 and Ti = Te = 2 × 106 K,
respectively. This leads to de = 0.53 m, η = 109T−3/2

e =

0.35 m2/s and τe = 0.8 s.
Although a coronal loop actually has a three-

dimensional magnetic-field structure, we suppose that the
neighborhood of a reconnection point is similar to the
geometry we have considered in this paper. The max-
imum scale of a coronal loop is about Lx = 107 m in
width, Ly = 108 m in length, with the peak magnetic
field being about Bmax = 0.1 T. Using the correspond-
ing Alfvén velocity vA,max = 2.2 × 108 m/s, we estimate
τH � Lx/vA,max = 0.046 s. Hence the resistive layer width
is δη � (τHη/ky)1/3 = 64 m. Even though the Lundquist
number S = LxvA,max/η ∼ 1015 is huge, it follows from the
condition δη > de that the resistivity dominates the elec-
tron inertia; that is, the reconnection seems to be resistive
rather than collisionless.

It is generally difficult to predict the guide field B0

around the reconnection point. If we take the average back-
ground magnetic field B0 = 0.01T as the guide field for
example, we obtain ρS = ρi = 0.13 m; these gyroradii are
roughly comparable to de.

Formula (22) requires only the threshold value δin, be-
yond which the explosive growth starts. If we choose the
resistive layer width δη as δin, we obtain

τrec ∼ 0.3 hour. (23)

This indicates that our explosive reconnection model is fast
enough to explain the observed time scales of solar flares
(which range from a few minutes to a few hours).

7. Summary
In this work, we have numerically and theoretically

investigated whether or not magnetic reconnection occurs
explosively in a gyrofluid model. When either the ion-
sound gyroradius ρS or the ion gyroradius ρi is comparable
to the electron skin depth de, an explosive magnetic re-
connection is triggered from a localized X-shaped current
layer, as shown in Fig. 2 and Fig. 3. For different choices
of the parameters (ρS, ρi, de) and even in the presence of a
finite resistivity η, this transition commonly occurs when
the mode amplitude ε (or the magnetic island width) ex-
ceeds the inner layer width δin. In the subsequent nonlin-
ear phase, we find almost the same ultimate reconnection
speed, which agrees well with the explosive scaling laws
(20) and (21).

We derived these scaling laws in Sec. 4 in a more so-
phisticated and general manner than was done in our pre-
vious work [15]. In our model, the reconnection speed is
simply determined by the ideal-MHD energy balance in
the external region (that is, in the whole region except for
the current layer), and the magnetic energy is mostly con-
verted into the kinetic energy of the outflow. We are then
able to predict explosive reconnection processes by sup-
posing that the X-shaped current layer is localized around
the reconnection point. In the strongly nonlinear phase dis-
cussed here, the nonideal-MHD effects inside the narrow
current layer are not important because the layer width and
the energy change within it are negligible in comparison
to those in the external region. The explosive reconnection
speed therefore does not depend on the sizes of ρS, ρi, de, η.

In the cold plasma limit ρS = ρi = 0, the plas-
moid instability occurs instead of the production of a sin-
gle X-shaped current layer. In this case, the reconnection
speed is accelerated intermittently in response to the plas-
moid instability, but it never exceeds the explosive scaling
law given by (21). We infer that the plasmoid instability
triggers local reconnections, enabling a more efficient ap-
proach to a lower magnetic energy state. The reconnection
speed seems to follow reasonably closely the result given
by (21).

By applying the scaling law (20) to the size of a so-
lar flare, we have also shown that the estimated collapse
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time is sufficiently fast to explain the observations. Al-
though the model we have studied here is very simple and
our theory is rather heuristic, the explosive reconnection
speed given by (20) and (21) is largely independent of the
microscale physics inside the current layer and appears to
be the fastest one that can be obtained from ideal-MHD
energy balance.
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