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Distributed instabilities can successively change one after another to give accelerated radial propagation. The
response of the linearly unstable distributed instabilities is identified in a gradual evolution phase as well as in a
phase just after impact of modulation. Global nonlinear simulations of drift-interchange modes in helical plasmas
are carried out with source modulation using a reduced MHD model. Conditional average of long time-series data
with the modulation period reveals characteristic responses of the plasma. Smaller-scale variations comparable
to the micro-temporal scale in this simulation are also included in the gradual evolution phase. The correlation
analysis shows that the evolution of the mean pressure is strongly correlated with the strength of the nonlinear
coupling. The evaluation of the energy balance to decompose the energy transfer into contribution from each
three-wave coupling clarifies that a single mode coupling at each location has the dominant contribution to the
smaller-scale pressure evolution in spite of self-organized mechanism with a wide range of comparable magnitude
modes. Comparison of mode amplitudes does not define the dominant one, so identification of the active mode is
useful for understanding the causality. This selection suggests the mechanism that gives the spreading effective
in the quasi-steady state as for the ballistic propagation in the self-organized critical state.
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It is widely recognized that simple diffusive mod-
els are not adequate to describe the transport phenomena
in torus plasmas [1]. To capture the nature of the trans-
port, there are several experiments to observe plasma non-
diffusive responses [2–4]. In particular, the modulation
experiments in the Large Helical Device (LHD) have re-
vealed several unresolved problems, such as a hysteresis
in the dependencies of turbulence and transport on the
mean pressure gradient [4], and abrupt increase of core
temperature associated with edge cooling [5]. A long-
range fluctuation with a scale size comparable to the minor
radius is observed in the modulation experiment, whose
origin is not yet clarified [6]. We have investigated the
dynamics of the global pressure profile by use of an ex-
tended reduced MHD model in helical plasmas to study
the transport mechanisms, and have observed propagation,
responding to the core heat modulation [7]. The turbulent
spreading is known as the successive response of radially
distributed micro-instabilities to give accelerated propaga-
tion [8–10]. The successive responses of localized modes
to large perturbations have been revealed, however, non-
linear mechanism exists to sustain the self-organized crit-
ical level [11, 12]. Therefore, the role of the modes in the
saturated state must be clarified, i.e., whether the lead-
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ing marginally unstable mode at each location can act as
a leader by overcoming the extinguishment by the non-
linear sustainment in the saturated state. For that pur-
pose, combination of the turbulence simulation and statis-
tical analysis (conditional averaging [4]) is used. Fluctu-
ations include random evolutions, and conditional averag-
ing is applied to eliminate the randomness and extract the
characteristic plasma response. Repetitive modulation of
a pressure source term is used as the trigger for the con-
ditional averaging. In this article, a response mechanism
of the mean pressure (poloidally and toroidally homoge-
nous component with temporal variation) is investigated
by evaluating the energy balance in the nonlinear global
simulation. Drift-interchange instability is calculated in a
helical plasma, which is localized near the rational surface
with k⊥a < 100, where a is the minor radius, and also in-
cludes drift wave properties. Mode coupling process simi-
lar to drift wave turbulence can be considered in spite of its
larger spatial scale. Not only the rapid response to impact
of the source change as in [7] but also the whole period
of the modulation is analyzed, which reveals that the lead-
ing modes plays the role for leading the pressure temporal
variation, though there exist several modes that have the
same level of nonlinear energy transfer. Note that what we
analyze is the response to the modulation, so some typical

c© 2017 The Japan Society of Plasma
Science and Nuclear Fusion Research

1303005-1



Plasma and Fusion Research: Letters Volume 12, 1303005 (2017)

variations remain after the averaging (not everything are
smoothed out). The selection of the leading nonlinear cou-
pling with the micro-scale evolution can be an important
indicator to describe the variation with sustainment of the
self-organized state.

For dynamical simulations, a simulation code has
been developed to calculate the electromagnetic nonlinear
saturation in toroidal helical plasmas with a circular cross-
section [13]. Toroidal coordinate (r, θ, ζ) is used, where
the position at r = 0 represents the center of the circular
cross-section. A set of reduced MHD equations of drift-
interchange instability is solved to obtain time evolutions
of 3 fields; stream function u, ζ component of the vec-
tor potential A and total pressure P. The reduced MHD
model to describe the interchange mode in helical plas-
mas [14] is extended to include a drift wave instability by
including the diamagnetic terms in the conduction equa-
tion [13]. The model is used as the fundamental one in-
cluding global and localized modes, nonlinear couplings
with the Reynolds stress, and collisional transport pro-
cesses, and the details are described in [7]. The instabil-
ities can drive heat fluxes to contribute to the pressure vari-
ation. The modes are localized at their resonance magnetic
surfaces, and the mode width ∼0.1a is larger than that of
typical micro instabilities in torus plasmas, which can be
induced with combination to the drift wave mechanism in
a helical plasma. The E × B nonlinear couplings between
the radially-distributed instabilities have the common fea-
ture in torus plasmas, so we use this as the target to investi-
gate the spreading, though there is difference in the spatial
scales. Recently turbulence simulations using gyro-kinetic
models can show good quantitative agreement to experi-
ments for transport in torus plasmas [15–17], but a global
simulation for a long-time series with non-adiabatic elec-
trons, which is necessary for our research, is still difficult
due to its large computational costs in helical plasmas [18],
so we use the fluid model in this article.

To clarify the dynamical response, source modulation
is investigated. Here, the parameter set as same in [7] is
used. The magnetic configuration is given by the rotational
transform ι in helical plasmas, which is the inverse of the
safety factor, as in Fig. 1 (a). With this profile the insta-
bility driven by the magnetic curvature distributes as in
Fig. 1 (b). This represents the mode amplitudes, and the
heat flux driven by them is more localized as shown in
Fig. 11 in Ref. [7]. The responses of the modes are inves-
tigated with source modulation. For the modulation, the
additional source is switched on and off cyclically, which
exists mainly near the center of the plasma in the region
with 0 < r/a < 0.3. The modulation cycle is set to be
1000τA, which is close to the energy confinement time,
where τA = R/VA is the Alfvén time, VA is the Alfvén ve-
locity, and R is the major radius. There exist large pres-
sure fluctuations, so superposition of source modulation
cycles (conditional averaging) is applied to eliminate ran-
dom fluctuations. The averaging over 40 cycles is carried

Fig. 1 (a) Rotational transform profile and (b) distribution of the
mode amplitudes. Radial profiles of the temporal aver-
aged mode amplitudes are shown in (b).

Fig. 2 Response to the modulation. Time evolutions of (a) the
applied source amplitude, and (b) the mean pressure gra-
dient at r/a = 0.6 are shown. The gradient is obtained
by the conditional average with the source modulation
period. The periods A and B in panel (b) represent the
phase with rapid change just after the source modulation
and the gradual evolution phase, respectively.

out in this analysis, which is sufficient for convergence [7].
Figures 2 (a)–(b) show the time evolutions of the pressure
source at the center, and the mean pressure gradient at
r/a = 0.6. At this observation position with r/a > 0.5, the
direct source change is negligibly small. Both micro-scale
(comparable to the transit time by the phase velocity of the
mode 50τs∼60τA, where τs is the ion acoustic transit time)
and meso-scale (several times larger than the former) tem-
poral evolutions can be extracted from the simulation data.
Only the variation with the micro-scale is the target in this
article.

To clarify the variation mechanism, the balance of the
terms in the model equation is decomposed into each con-
tribution. The evolution equation of the internal energy of
the (m, n) component is given as

∂EPmn
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Fig. 3 Time evolution of the energy balance terms in Eq. (1) at
r/a = 0.6.

where [ ] is the Poisson bracket, S is the source term, m
and n are the poloidal and toroidal mode-number, and α,
C, Ψ0, η⊥ are defined in [7]. Here, t is normalized by
τA. The 1st, 2nd and 3rd terms in the right hand side of
Eq. (1) come from linear contributions by parallel deriva-
tive (LN1,LN2) and diffusion (LN3). The 4th term is from
the source (ST), which only contains the (m, n) = (0, 0)
component in this case. The 5th term is the nonlinear con-
tribution from convective derivative (NL). We focus on
the nonlinearities from the Reynolds stress, and nonlinear
terms from the Maxwell stress are not included in the cal-
culations, which is known to have little effect in the low β
case [19, 20]. Figure 3 shows the time evolution of the en-
ergy balance of the (m, n) = (0, 0) component at r/a = 0.6.
After the additional source is switched on at t = 0, the
evolution of the left hand side of Eq. (1) (TE) increases
from negative to above zero after a time delay ∼40τA for
propagation of the source increase in the plasma central re-
gion [7]. The source contribution (ST) is positive, and LN
(summation of LN1-3) and NL are negative for the whole
of the duration, so ST is the drive for the pressure profile
formation, however the temporal variation of ST is much
smaller than that of TE. The correlation coefficient be-
tween two time-series data p and q

C(p, q) =

∑
i

(p(i) − p̄) (q(i) − q̄)

√∑
i

(p(i) − p̄)2
∑

i

(q(i) − q̄)2

, (2)

is used for the evaluation, where p̄ represents the temporal
average of p. The correlation between TE and NL is larger
(correlation coefficient 0.8) than that between TE and LN
(correlation coefficient 0.0), so the temporal variation is
dictated by the nonlinear contribution from NL, which cor-
responds to the transport driven by the instabilities to mod-
ify the pressure profile. The time evolution indicates that
NL and LN are anti-phased with each other, and the corre-
lation analysis shows NL is preceding LN with δt = 3τA.
This is why the pressure variation appears, and the time
delay, much smaller than the transit time, corresponds to
the duration for adjustment to sustain the saturated level.

The important role of the nonlinear term is confirmed

Fig. 4 Nonlinear contribution to the P00 component. The aver-
aged contributions NL are decomposed into each (m, n)
component at r/a = 0.6.

Fig. 5 Time evolution of the nonlinear contribution to the P00

component. (a) Total nonlinear contribution at r/a = 0.6
and (b) those of prominent modes in Fig. 4 are shown.

in the evolution, so next the decomposition of mode cou-
plings is carried out to identify the dominant mode af-
fecting the pressure evolution. Figure 4 shows nonlinear
contributions NL decomposed into each (m, n) component.
In red regions, the P00 component gets the energy from
modes, and in blue regions, vice versa. The averaged val-
ues over t = 1–1000 (whole of the cycle) are shown. There
is radial distribution of the nonlinear contribution corre-
sponding to the rotational transform profile, and modes
with m/n ∼ 1.3 have large amplitudes at r/a = 0.6, where
the inverse of the iota is 1/ι = 1.3. The modes with
(m, n) = (3, 2), (4, 3), (5, 4), (6, 5), (7, 5), (9, 7), (10, 8),
(11, 8), etc. are large and have the same order of ampli-
tudes as in Fig. 4. Figure 5 shows the time evolutions of
the nonlinear contributions. The total nonlinear contribu-
tion in (a) is determined by combination of several mode
couplings as in (b). The correlation analysis shows strong
correlation with mode (m, n) = (4, 3) (correlation coef-
ficient 0.5), which has the largest amplitude at the posi-
tion as in Fig. 1 (b), and weak correlation with the other
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Fig. 6 Radial profiles of the correlations of nonlinear contribu-
tions to the P00 component. The correlations between the
total contribution and those from individual modes are
shown.

modes (the second most correlation coefficient is 0.3 with
mode (m, n) = (7, 5)). The dominant mode couplings for
the smaller-scale evolution are different depending on the
radial positions, and is not simply the largest amplitude
mode at each position. Figure 6 shows the radial profiles of
the correlations. There is a single dominant mode at each
position, whose resonant position locates nearby. How-
ever, at r/a = 0.5, for example, the dominant one is mode
(m, n) = (7, 5), though the largest amplitude one is mode
(m, n) = (3, 2). This is because the mode is possible to
be driven passively by nonlinear couplings with the other
modes. This is similar to the case of the heat flux; there
exists a mode that does not drive the heat flux [7].

In summary, global nonlinear simulations of drift-
interchange modes in helical plasmas are carried out to
clarify the mechanism of the evolution of mean pressure.
Conditional average with the modulation period is used to
extract the characteristic response of the plasma, and fluc-
tuations in the phase gradually approaching to the steady
state is also analyzed. The evaluation of the energy bal-
ance confirms that nonlinear variation is sustained by a
wide range of excited modes. It is found that a single lin-
early unstable mode at each location has the dominant con-
tribution to the smaller-scale pressure evolution. Linearly
unstable modes can induce nonlinear modification of the
pressure profile by a modulational process, and the pro-
file modification is flattened by the linear diffusion term.
There is a time delay of the linear response, so the pro-
file modification appears. The time evolution is led by the
dominant mode, so identification of the active mode is use-
ful for understanding the causality in the evolution. The
distributed instability has been known to affect the acceler-
ated propagation by the turbulence spreading mechanism,
and is found to be effective in a gradual evolution phase as
well as in a phase just after a large modulation.

In the simulation there exists another characteristic
frequency in the broad band spectrum, which has the
longer time-scale than the smaller turbulent time-scale.

The oscillation is induced by coupling with the magnetic
curvature term, and also appears in the evolution of the
mean pressure. It is possible to act as a nonlinear chan-
nel for energy redistribution. The oscillation is electro-
magnetic, which accompanies with variation of the posi-
tion of a magnetic axis. Change of the magnetic config-
uration can affect both neoclassical [21] and turbulent [22]
transport in the wide region of the plasma, so the effect
should be evaluated. For explanation of experimental re-
sults of non-local responses, importance of effects in the
phase space is pointed out [23]. The model adopted in this
article is a simplified one, and inclusion of such effect by
applying a gyro-kinetic model is left for future works.
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