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By employing the integral formulation of dielectric tensor, we have introduced the kinetic full wave analysis
of ordinary-extraordinary-Bernstein (O-X-B) mode conversion in tokamak plasma in one dimension on the basis
of TASK/W1 code using the finite element method. The boundary value problem of Maxwell’s equation is solved
and the finite Larmor radius effects are represented by integral formulation. The O-X-B mode conversion and the
absorption near the cyclotron harmonic resonance are successfully described.
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1. Introduction
The electromagnetic waves in the electron cyclotron

(EC) range of frequencies have been successfully applied
to the electron cyclotron heating (ECH) and current drive
(ECCD) in fusion devices. EC waves are extremely use-
ful due to the fact that they can be launched far from the
plasma and have features of highly localized and control-
lable heating capabilities.

The remarkable advantages of ECH and ECCD in
high density plasma core have led great interest in theoret-
ical and experimental investigations of EC waves in past
decades [1–5]. Electromagnetic (EM) plasma waves such
as ordinary (O) or extraordinary (X) waves suffer the wave
cutoffs in high-density regions. This is particularly noticed
in spherical tokamaks (STs) operated in high-β regimes
generally, in which the usual O- and X-modes are cut off.
In this case, electron Bernstein waves (EBWs) seem to
be the option which provide the penetration to the high-
density region.

Bernstein waves need to be excited externally through
mode conversion of injected EM waves owing to high
temperature in fusion plasmas. Well known schemes of
mode conversion include high field side launch of wave,
direct eXtraordinary Bernstein (X-B) mode conversion and
Ordinary-eXtraordinary-Bernstein (O-X-B) mode conver-
sion. Among them, the O-X-B mode conversion tech-
nique [6] is the most promising of ECH/ECCD in over-
dense plasmas both in tokamaks and stellarators [7–9]. At
specific launching angle, an O-mode wave converts to X-
mode at a cutoff frequency. After this conversion, the wave
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propagate backwards to the plasma edge till it encounters
the upper hybrid resonance (UHR) layer. Since electron
Bernstein wave is a quasi-electrostatic mode required to
be excited in UHR layer, hence, a second mode conver-
sion takes place from X-mode into an electron Bernstein
wave. Electron Bernstein wave heating and current drive
is an attractive candidate for sustaining a steady state ST
plasma [5, 10, 11]. Accurate understanding of mode con-
version processes in fusion devices is important both for
the interpretation of diagnostic data and quantitative anal-
ysis of ECH and/or ECCD.

Usual analysis of propagation and absorption of EC
waves employs ray tracing method based on geometri-
cal optics for waves with short wavelength [12, 13]. In a
plasma with high density or low magnetic field, however,
the presence of cutoff layer may prevent the waves from
penetrating into the central part from the low field side.
Therefore full wave analysis in which Maxwell’s equation
is solved as a boundary-value problem is required for self-
consistent description of the RF waves. In a hot plasma,
however, we have to include kinetic effects, especially fi-
nite Larmour radius (FLR) effects, in the full wave analy-
sis. Several schemes have been developed to describe the
FLR effects and implemented in the numerical codes. One
is to expand the FLR effects in the powers of k⊥ρ where
k⊥ is the wave number perpendicular to the magnetic field
and ρ is the Larmor radius. This analysis is limited to
|k⊥ρ| < 1 and is usually limited up to the second order, e.g.
the TORIC code [14]. Therefore this scheme is not appli-
cable to the situation where k⊥ρ � 1. The second scheme
is to apply the Fourier analysis to inhomogeneous plasmas
and sum up all the Fourier components of the dielectric ten-
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sor. This scheme has been successfully applied to the ion
cyclotron heating using the AORSA code [15]. Since all
Fourier components are coupled with each other, a large-
size matrix equation with a dense coefficient matrix has to
be solved. Therefore it is prohibitive to apply this scheme
to EC waves with short wave-length in tokamak plasmas.
We have developed a third scheme to describe the dielec-
tric tensor as an integral operator and solve the integro-
differential Maxwell’s equation [16] by the finite element
method (FEM). Preliminary analysis of this scheme was
applied to the IC waves in the presence of energetic particle
scheme [17]. Merit of the integro-differential approach is
that, since the wave number is not used in this approach, it
is applicable to the cases where k⊥ρ > 1 and that the inter-
action with wave electric field is spatially localized within
gyro radius of particles, and therefore the coefficient ma-
trix is sparse and less computational resource is requird.
In the present article, the full wave analysis of the elec-
tron Bernstein waves in tokamak plasmas is reported for
the first time. Though the analysis is one-dimensional and
small-size plasma at present, it seems feasible to extend to
two-dimensional and large-size plasma.

In this paper, we introduce one-dimensional kinetic
full wave analysis using the integro-differential approach
in section 2, apply it to the O-X-B mode conversion in
tokamak configuration in section 3, and summary and dis-
cussion are given in section 4.

2. Theoretical Formulation of Finite
Larmor Radius Effects
Let us consider the particle trajectory in the presence

of static magnetic field B0(x) in z-direction at time t, i.e.,
v ≡ v(t) = (v⊥ cos φ, v⊥ sin φ), v‖), we can write for time
t′ = t − τ as x′ ≡ x(t′) = x(t) + (v⊥/Ω)(sin φ − sin(φ +Ωτ))
and v′ ≡ v(t′) = (v⊥ cos(φ + Ωτ), v⊥ sin(φ + Ωτ), v‖),
where Ω = qB0/m is the cyclotron frequency, q and m
are the electric charge and mass of the particle, φ is the
initial gyro phase, and v⊥ and v‖ are components of the
electron velocity perpendicular and parallel to the mag-
netic field, respectively. Considering the electric field per-
turbation: E(r, t) = E(x) exp ( i k‖z − iωt), the linearized
Vlasov equation leads to the induced current expressed as

j(x) =
∫

dv qv
∫ t

−∞
dτ

q
m

e i (ω−k‖v‖)τ

× [
E(x′) + v′ × B(x′)

] · ∂ f0(x0, v′)
∂v′

, (1)

where x0 is the guiding center position. Using the
anisotropic Maxwellian distribution function

f0(x0, v) = n0(x0)
(

m
2πT⊥(x0)

)3/2 (
T⊥(x0)
T‖(x0)

)1/2

× exp

⎧⎪⎪⎨⎪⎪⎩−
mv2⊥

2T⊥(x0)
−

mv2
‖

2T‖(x0)

⎫⎪⎪⎬⎪⎪⎭ , (2)

the induced current density is reduced to

j(x) =
n0(x0)q2

T⊥(x0)

(
m

2πT⊥(x0)

)3/2 (
T⊥(x0)
T‖(x0)

)1/2

×
∫ ∞

−∞
dv‖

∫ ∞

0
dv⊥

∫ 2π

0
dφ

∫ ∞

0
dτ

× exp

⎧⎪⎪⎨⎪⎪⎩−
mv2⊥

2T⊥(x0)
−

mv2
‖

2T‖(x0)
+ i (ω − k‖v‖)τ

⎫⎪⎪⎬⎪⎪⎭

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
v⊥ cos φ
v⊥ sin φ

v‖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
Gx Gy Gz

)
· E(x′), (3)

where

Gx =

[
1 −

(
1 − T⊥

T‖

)
k‖v‖
ω

]
v2
⊥ cos(φ + Ωτ)

Gy =

[
1 −

(
1 − T⊥

T‖

)
k‖v‖
ω

]
v2
⊥ sin(φ + Ωτ)

Gz =
T⊥
T‖

v2
⊥v‖ − i

(
1 − T⊥

T‖

)
v2⊥v‖
ω

cos(φ + Ωτ)
∂

∂x′
.

Here, the transformation from the velocity space variables
(v⊥, φ) to the particle position x′ and the guiding cen-
ter position x0 is of prime importance. The relation be-
tween them is established through the unperturbed orbit,
x = x0 − (v⊥/Ω) sin φ and x′ = x0 − (v⊥/Ω) sin(φ + Ωτ).
The Jacobian of this transformation is given by J ≡
−Ω2/v⊥ sinΩτ. The integrand in eq. (3) is a periodic func-
tion w.r.t. Ωτ which can be expressed as Fourier series
and easily integrated over τ. The integration over v‖ can
be expressed by the plasma dispersion function Z (η) with
η ≡ (ω − nΩ) /(

√
2k‖vT‖) where vT = (T/m)1/2. Finally,

the expression for induced current becomes

j(x) =
∫ ∞

−∞
dx′↔σ (x, x′) · E(x′), (4)

and the explicit form of conductivity tensor ↔σ (x, x′) is
given in Appendix. The dielectric tensor ↔ε (x′, x) is the
sum of the conductivity tensor of species s and the contri-
bution from the displacement current,

↔ε (x′, x) =δ(x − x′) +
i
ωε0

∑
s

↔σ (x, x′). (5)

Using this dielectric tensor, Maxwell’s equation is ex-
pressed as

∇ × ∇ × E(x) − ω
2

c2

∫ ∞

−∞
dx′↔ε (x, x′) · E(x′)

= iωμ0 jext(x). (6)

3. 1D Kinetic Full Wave Analysis of
O-X-B Mode Conversion
We have solved eq. (6) in a slab model numerically

by using the finite element method and analyzed the mode
conversion and power absorption. The plasma parameters
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Fig. 1 (a) Wave number kx as a function of major radius x = R−R0 obtained from the dispersion relation. The red and blue marks indicate
the real and imaginary parts of the wave number, respectively. The marks in the upper half plane corresponds to propagating waves,
k2

x > 0, and the lower half plane evanescent waves, k2
x < 0. (b) Profiles of the wave electric field and the power deposition along

x major radius for T (0) = 500 eV, kz = 32 m−1. The red line indicates the real part of the wave electric field, the blue line the
imaginary part, and the black line the absolute value, respectively.

of the small-size spherical tokamak (LATE) are consid-
ered. Major radius of the device R0 = 0.22 m, minor radius
a = 0.16 m, central magnetic field is B0 = 0.08 T, central
electron density is 1017 m−3 and the frequency of the wave
excited by antenna current is 2.45 GHz. The temperature
profile is parabolic and the density profile is the square root
of the parabolic. In the following calculation, 1000 mesh
points are used.

Figure 1 (a) shows the wave number kx as a function
of major radius x = R−R0 obtained from the dispersion re-
lation for the optimum parallel wave number kz = 32 m−1.
The vertical axis indicates |kx| for propagating modes in
the upper half plane and −|ikx| for evanescent modes in the
lower half plane. For this value of kz, both the plasma cut-
off (PC: ω2 = ω2

p) of the O-mode and the left-hand-cutoff
(LC) of the X-mode are very close to each other around
x = 0.085 m. The O-mode is mode-converted to the X-
mode at PC & LC and the X-mode is mode converted to the
EBW near the UHR after changing the direction of propa-
gation (mode conversion from the fast X-mode to the slow
X-mode). The EBW propagates inwards with increasing
wave number towards the high field side, and is absorbed

at the ECR.
The wave electric filed structure and the power de-

position profile calculated by the TASK/W1 code for the
parameters of Fig. 1 (a) are shown in Fig. 1 (b). For input
power of 1 W, the unit of the wave electric field is V/m, and
that of absorbed power density is W/m3. The wave is ex-
cited as an O-mode by the antenna current in the z direction
at R−R0 = 0.17 m. The parallel component Ez indicates the
sum of the O-mode component and the electrostatic com-
ponent − i kzΦ of the wave. Most of the O-mode is mode-
converted to the X-mode component Ey and the other part
penetrate over the evanescent layer to the high field side.
Though a part of the X-mode returns to the plasma surface
x = 0.16 m, most of the wave energy is converted to the
electrostatic Bernstein mode near the UHR, x = 0.12 m.
The electrostatic component is dominant in the x compo-
nent of the wave electric field Ex, since the wave length
of the Bernstein is very short and the wave number kx is
much higher than those of the X- and O-mode. The Bern-
stein wave propagates towards the high density region and
absorbed near the fundamental ECR around of x = −0.1 m.
The absorbed power density pabs(x) is simply calculated by
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Pabs = j∗ · E and oscillates owing to the interference be-
tween the EBW and the X- mode. This comes from the
ambiguity between the kinetic power absorption and the
gradient of kinetic power flux. More rigorous definition of
Pabs is necessary for positive power absorption density.

The injection angle dependence of the mode conver-
sion efficiency is examined by the kz dependence of the an-
tenna loading resistance. Preliminary results suggest that
the antenna loading resistance has a maximum at the opti-
mum angle, kz = 32 m−1, and decreases to about 30% for
kz = 24 m−1 and kz = 40 m−1.

4. Summary
We have made kinetic full wave analysis of electron

cyclotron waves for O-X-B mode conversion by 1D hot
plasma model by employing the TASK/W1 code. Such
analysis using the integral form of dielectric tensor derived
by following the unperturbed particle orbit successfully de-
scribes the O-X-B mode conversion near the UHR layer
and absorption near the ECR layer. More systematic anal-
yses of parameter dependence and quantitative comparison
with analytical estimates will be reported in a separate pa-
per.
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Appendix
The integral form of the conductivity tensor is written

as

↔σ (x, x′) =
∫ ∞

−∞
dx0

i n0q2

mω

(
Ω

vT⊥

)2 ∞∑
n=−∞

↔
H (x, x′, x0),

(A.1)

where the components of the tensor
↔
H are given by

Hxx = −nA1F(2)
n

Hyx = iA1(X − Y)
{
(X − Y)F(3)

n − (X + Y)F(4)
n

}
Hzx = −iA2

{
(X − Y)F(3)

n − (X + Y)F(4)
n

}
Hxy = −iA1(X + Y)

{
(X + Y)F(3)

n − (X − Y)F(4)
n

}
Hyy = −A1(X + Y)(X − Y)F(1)

n

Hzy = A2(X + Y)F(1)
n

Hxz = iA2

{
(X + Y)F(3)

n − (X − Y)F(4)
n

}

Hyz = A2(X − Y)F(1)
n

Hzz =

√
2vT‖η
vT⊥

A2F(1)
n ,

with

X ≡ Ω
vT⊥

(
x0 − x + x′

2

)
, Y ≡ Ω

2vT⊥
(x − x′).

The kernel function F(i)
n is defined by

F(i)
n (X,Y) ≡ 1

2π2

∫ π

0
dθ

× exp
[
− X2

1 + cos θ
− Y2

1 − cos θ

]
f (i)
n (θ),

with

f (i)
n (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos nθ
sin θ

(i = 1)

sin nθ (i = 2)
sin nθ

sin2 θ
(i = 3)

cos θ sin nθ

sin2 θ
(i = 4).

Finally the coefficients A1 and A2 are given by

A1 ≡ ω√
2k‖vT‖

Z(η) +
(
1 − T⊥

T‖

)
Z′(η)

2
,

A2 ≡ ω

2k‖vT⊥

{
T⊥
T‖
+ n
Ω

ω

(
1 − T⊥

T‖

)}
Z′(η)·
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