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Through the process of inward diffusion, a strongly localized clump of plasma is created in a magnetosphere.
The creation of the density gradient, instead of the usual flattening by a diffusion process, can be explained
by the topological constraints given by the adiabatic invariants of magnetized particles [ Z. Yoshida and S.M.
Mahajan, Prog. Theor. Exp. Phys. 2014, 073J01 (2014). N. Sato and Z. Yoshida, J. Phys. A: Math. Theor.
48, 205501 (2015).]. After developing a canonical formalism for the standard guiding center dynamics in a
dipole magnetic field, we complete our attempt to build a statistical mechanics on a constrained phase space
by discussing the construction principles of the associated diffusion operator. We then investigate the heating
mechanism associated with inward diffusion: as particles move toward regions of higher magnetic field, they
experience preferential heating of the perpendicular (with respect to the magnetic field) temperature in order to
preserve the magnetic moment. A relationship between conservation of bounce action and temperature isotropy
emerged. We further show that this behavior is scaled by the diffusion parameter of the Fokker-Planck equation.
These results are confirmed by numerical simulations.
c© 2016 The Japan Society of Plasma Science and Nuclear Fusion Research
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1. Introduction
Magnetospheres [1–3] are the paradigm of systems

that seemingly exhibit deviation from the classical under-
standing of physical principles. Through the process of
inward diffusion (or radial/up-hill diffusion), magnetized
particles build-up an heterogeneous structure along the
equator of the dipole magnetic field [4–7]. The resulting
formation of a radiation belt seems to contradict the sec-
ond law of thermodynamics. Recently, self-organization of
such plasma structures was put in the perspective of a topo-
logically constrained particle dynamics arising from adia-
batic invariants of magnetized particles [8, 9]. Further in-
vestigations have shown the consistency of the theory with
the observed rigidly rotating thermal equilibrium of non-
neutral plasmas in a magnetospheric configuration [10].
Additional research has led to the formulation of a diffu-
sion operator on an appropriate phase space reflecting the
geometrical constraints imposed by adiabatic invariants: a
flat distribution in these proper coordinates yields a non-
uniform density in the Cartesian reference system [11].

The interest in the mechanism of magnetospheric
self-organization stems from the wide areas of both the-
oretical and applied physics involved in its understand-
ing. A well-known mathematical issue is whether vari-
able reduction resulting from topological constraints leads
to a Lagrangian/Hamiltonian formalism [12] on the con-
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tracted space. This problem relates to the type of dy-
namical constraints (holonomic or not) affecting the sys-
tem [13–15]. From the point of view of plasma physics, it
is desirable to precisely understand the mechanism behind
dipole confinement, especially for nuclear fusion and mat-
ter/antimatter confinement applications [16–18]. Similar
up-hill particle transports are observed in other magnetic
confinement systems with different configurations, such as
tokamaks and stellarators. For example, the thermodiffu-
sion and curvature driven transport are proposed as under-
lying mechanisms [19, 20]. These mechanisms require a
thermodynamic force generated by a temperature gradi-
ent; hence they can operate in externally driven (open)
systems. In contrast, the mechanism that we are delin-
eating is based on a totally different principle; the seem-
ingly strange transport is not due to an involved reaction of
particle flux to other fluxes (which may be formulated by
some ‘off-diagonal’ coefficients of response functions), but
is caused by topological constraints imposed by adiabatic
invariants. This mechanism does not need an active ex-
ternal drive, but becomes evident in a strongly inhomoge-
neous magnetic field such as the dipole field of a magneto-
sphere. Finally, Planetary magnetospheres are also the ob-
ject of intense astronomical observations [21–23] for their
relevance in space weather forecasting.

Recent measurements in the RT-1 machine have re-
ported the role of inward diffusion in heating-up the con-
fined plasma concurrently with breaking of the second adi-
abatic invariant [24]. This suggests that magnetized par-
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ticles not only accumulate to form a radiation belt, but
also undergo a progressive acceleration due to the topo-
logical constraint affecting the non-spatial part of phase-
space. Magnetospheric self-organization works both as a
magnetic trap and a heating device.

In the present paper, extending the diffusion model
developed in [11], we investigate this acceleration mech-
anism. In section II we write down the guiding center
equations of motion under investigation. In section III we
separate cyclotron motion and reduce the dynamical space
to a foliation. The equations of motion are then rewritten
in terms of the novel coordinates spanning it. We further
show that the reduced flow is measure preserving, even if
not written in terms of canonically paired variables. In
section IV canonical variables are constructed by deriv-
ing the associated symplectic 2-form. In section V we ob-
tain the corresponding Fokker-Planck equation (FPE). In
sections VI and VII we make a correspondence between
the parameters of the FPE for inward diffusion and the
time-scale/strength of fluctuations. The relation of diffu-
sion with preservation of bounce action is also shown. In
section VIII we study the plasma temperature profile: our
equation predicts a higher anisotropy for faster, stronger
diffusion, with the corresponding destruction of the second
adiabatic invariant. The phenomenon of preferential heat-
ing of the normal temperature is also reproduced. Section
IX is for the conclusions. Finally, we will exploit stochas-
tic calculus to handle the change of variables from mag-
netic coordinates on the foliation to the oridnary Cartesian
reference system [25, 26].

2. Guiding Center Dynamics in a
Dipole Magnetic Field
We study the dynamics of a gyrating particle obeying

the guiding center equations:

v̇‖ = − 1
m

(μB + eφ)l + v‖vE×B · k, (1a)

v = v‖ + vE×B + v∇B + vk. (1b)

Here, μ is the magnetic moment, e the electric charge,
B = ∇ψ × ∇θ the magnetic field, ψ the flux function, θ
the toroidal angle, φ the electric potential, v‖ the velocity
along magnetic field lines, l the length along a field line,
k = ∂l (B/B) = ∂l∂l = ∂2

l the curvature of the magnetic
field, v the particle velocity, vE×B, v∇B, and vk the E × B,
∇B, and curvature drifts, and the pedix notation is used for
derivation, except when differently specified.

3. Separation of Cyclotron Motion
Conservation of magnetic moment μ implies that we

can separate the canonical pair (θc, μ), with θc the phase
of the gyration, from the full particle dynamics invariant
measure:

dxdydzdpxdpydpz = m2dldv‖dθdψ × dθcdμ. (2)

The × symbol underlines the operated separation. Here,
(x, p) are the usual canonical variables and we used the
fact that |∇l · ∇ψ × ∇θ| = B, p‖ = mv‖, p⊥ = mv⊥ =
m(vc cos θc+vd·∂⊥), and pθ = m(vc sin θc+vd·∂θ/|∂θ|)+eψ/r,
with 2μB = mv2

c and vd = v − vc. In our notation ∂l = B/B
is the unit tangent vector to field lines, ∂⊥ = ∇ψ/|∇ψ| the
unit normal vector to field lines, ∂θ/|∂θ| the unit vector in
the toroidal direction. Thanks to the separation, the actual
dynamical variables are reduced to 4:

(
l, v‖, θ, ψ

)
. Let us

translate equations (1a) and (1b) in these new coordinates:

l̇ = ∇l · v = v‖ − qφθ, (3a)

v̇‖ = − 1
m

(μB + eφ)l + v‖qlφθ, (3b)

θ̇ = ∇θ · v =
(
∂ψ + q∂l

) (μ
e

B + φ
)
− m

e
v2
‖ql, (3c)

ψ̇ = ∇ψ · v = −φθ, (3d)

where we introduced the quantity q = −∂l · ∂ψ = ∇l ·
∇ψ/|∇ψ|2. One can verify that the above equations are
already measure preserving: if X =

(
l̇, v̇‖, θ̇, ψ̇

)
is the dy-

namical flow and vol4 = dl ∧ dv‖ ∧ dθ ∧ dψ, we have

LXvol4 = div(X)vol4 = 0. (4)

This result is important, because the property required to
introduce a consistent definition of entropy on the folia-
tion (leaf-entropy) is a preserved volume element on the
contracted space [27]. However, as we will see later on,(
l, v‖, θ, ψ

)
are not canonical variables. We also emphasize

that the second law of thermodynamics applies for the FPE
formulated on a proper phase space that has an invariant
measure [8, 11]; homogeneous fluctuations in the invari-
ant coordinates will flatten the corresponding distribution
function by Fickian diffusion and thus increase the entropy
defined on the μ-submanifold. It is the Jacobian of the co-
ordinate change to the Cartesian variables that yields the
observed inhomogeneity.

4. Construction of Canonical Vari-
ables
In order to obtain canonical variables, we look for the

two-form ω describing the dynamical flow X:

iXω = −dH, (5)

where i is a contraction and H the energy of the system. To
calculate ω, we need H. We expect the energy function:

H =
m
2

v2
‖ + μB + eφ, (6)

to be constant under the flow generated by X. This is be-
cause guiding center drifts result from neglecting the par-
ticle mass in the equations of motion perpendicular to the
magnetic field. This means that drifts do not contribute
with their kinetic energy to H. Indeed, one can verify that
LXH = iXdH = Ḣ = 0. Solving equation (5) for ω, one
obtains:

ω = dv‖ ∧dl+v‖qldψ∧dl+dψ∧dθ+qdψ∧dv‖. (7)
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For the system to be Hamiltonian, ω must be non-
degenerate and exact. That the determinant of ω is differ-
ent from zero is straightforward, thus this two-form is non-
degenerate. Let us see how ω is also exact, i.e. ω = dλ, for
some one-form λ. From (7):

ω = dv‖∧dl+dψ∧d
(
θ + qv‖

)
= d

(
v‖dl + ψdη

)
, (8)

where we introduced the new variable η = θ + qv‖. (8)
shows that ω is exact, with λ = v‖dl + ψdη. It follows that(
l, v‖

)
and (ψ, η) form two canonical pairs.

5. Fokker-Planck Equation on a Foli-
ated Phase Space
To investigate the heating mechanism of inward diffu-

sion, we will study the time evolution of the guiding cen-
ters’ distribution function by solving an appropriate FPE.
The procedure required to obtain it is given in [11]. Here,
we extend this equation by adding the toroidal angle θ and
by introducing curvature effects.

Here is a right juncture to make a comment on the
gyro-kinetic model [12,28,29]. Separating the gyro-action,
we obtain the drift-kinetic equation. However, it may oc-
cur that some perturbations reach the scale of the Larmor
radius, and then, we have to invoke a more careful treat-
ment for the ‘guiding centers’. The gyro-kinetic model is
a realization of a Hamiltonian mechanics that takes into
account a self-consistent electromagnetic field. In our for-
malism, however, we are assuming that the guiding cen-
ters are ‘quasi-particles’ which are conserved in the phase
space that is separated from the gyro angle. Therefore, the
perturbations must not reach the small scale of gyro mo-
tion.

In order to derive the desired transport equation we
need to convert equations (3a), (3b), (3c), and (3d) to a
system of stochastic differential equations. To understand
the conversion procedure, it is useful to give a formal dis-
cussion of the exploited working hypothesis (e〈 〉 stands
for ensemble average):
1. We assume overall charge neutrality e〈E〉 = 0.
2. The drifting velocity vE×B, belonging to the tangent bun-
dle T M, is a random processes with null ensemble average:

e 〈vE×B〉 = 0. (9)

This requirement, which physically states that there are no
deterministic currents associated with the fluctuations, is
important when applying the change of variables formula
of stochastic calculus. A formal justification of equation
(9) follows by noting that charge neutrality implies: 0 =
e〈vE×B〉 × B + e〈E〉 = e〈vE×B〉 × B.
3. Electromagnetic fluctuations are such that the ergodic
hypothesis is satisfied on the leaf

(
l, v‖, θ, ψ

)
obtained by

separating cyclotron motion (θc, μ) from the original in-
variant measure (4). Physically, this requirement is just
saying that the first adiabatic invariant is such robust that

the actual phase-space accessible to the magnetized rings
is the symplectic sub-manifold dldv‖dθdψ. Consequently,
we build a (possibly constrained) statistical mechanics on
this reduced invariant measure by introducing Wiener pro-
cesses. In mathematical terms we are asking the ‘leaf’
electric field to satisfy:

E = −dφ =
m
e

D1/2
‖ Γ‖dl + D1/2

⊥ Γ⊥dθ + D1/2
θ Γθdψ.

(10)

Here mD1/2
‖ Γ‖/e = −φl, D1/2

⊥ Γ⊥ = −φθ, and D1/2
θ Γθ = −φψ

are Gaussian white noises with Γdt = dW. The parameters
D‖, D⊥, and Dθ are constants scaling the strength of diffu-
sion. Let us calculate the expression of the electric field E
in the usual Cartesian coordinates:

E =
m
e

D1/2
‖ Γ‖∇l + D1/2

⊥ Γ⊥∇θ + D1/2
θ Γθ∇ψ. (11)

Using equation (11), the E × B velocity becomes:

vE×B = D1/2
⊥
Γ⊥
rB
∂⊥−

(
D1/2
θ Γθ +

m
e

qD1/2
‖ Γ‖

)
∂θ. (12)

Note that this expression is consistent with equation (9). It
is straightforward to deduce the spatial displacements dXθ

and dX⊥ along ∂θ/|∂θ| and ∂⊥ caused by (12) (upper-case
letters are used to specify random variables):

dXθ = −r
(
D1/2
θ dWθ +

m
e

qD1/2
‖ dW‖

)
, (13a)

dX⊥ =
D1/2
⊥

rB
dW⊥. (13b)

In order to obtain the desired stochastic differential equa-
tions, it is sufficient to apply the change of variables for-
mula of stochastic calculus, by noting that the changes dΨ
and dL are affected by dX⊥, the change dΘ by dXθ, and the
change dV‖ by dW‖ and dW⊥:

dL =
{

v‖ + Cl +

(
1
2
− α

)
D⊥

[(
∂ψ + q∂l

)
q

+q
(
∂ψ + q∂l

)
ln(rB)

]}
dt + qD1/2

⊥ dW⊥, (14)

dV‖ = −
(
μ

m
Bl + γv‖ − Cv‖

)
dt + D1/2

‖ dW‖

− D1/2
⊥ v‖qldW⊥, (15)

dΘ =
[
μ

e

(
∂ψ + q∂l

)
B + Cθ − m

e
v2
‖ql

]
dt − D1/2

θ dWθ

− m
e

qD1/2
‖ dW‖, (16)

dΨ =
[
D⊥

(
1
2
− α

) (
∂ψ + q∂l

)
ln (rB) + Cψ

]
dt

+ D1/2
⊥ dW⊥. (17)

The last step is to translate these equations into a FPE. The
result is:

∂P
∂t
= − ∂

∂l

{
v‖ +

(
1
2
− α

)
D⊥

[(
∂ψ + q∂l

)
q
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+q
(
∂ψ + q∂l

)
ln(rB)

]
+ Cl

}
P

+
∂

∂v‖

(
μ

m
Bl + γv‖ − Cv‖

)
P

− ∂
∂θ

[
μ

e

(
∂ψ + q∂l

)
B + Cθ − m

e
v2
‖ql

]
P

− ∂

∂ψ

[
D⊥

(
1
2
− α

) (
∂ψ + q∂l

)
ln (rB) + Cψ

]
P

+
1
2

D⊥
∂2

∂l2
q2P +

1
2

D‖
∂2P
∂v2
‖
+

1
2

Dθ
∂2P
∂θ2

−m
e

D‖
∂2

∂v‖∂θ
qP +

m2

2e2 D‖
∂2

∂θ2 q2P

+
1
2

D⊥
∂2P
∂ψ2 + D⊥

∂2

∂l∂ψ
qP

−αD⊥
∂

∂l

[(
∂ψ + q∂l

)
q
]

P

−D⊥
∂2

∂l∂v‖
v‖qqlP +

1
2

D⊥
∂2

∂v2
‖

(
v‖ql

)2 P

−D⊥
∂2

∂ψ∂v‖
v‖qlP

+αD⊥
∂

∂v‖

[
v‖

(
q∂l + ∂ψ

)
ql − v‖q2

l

]
P. (18)

Here, the parameter α ∈ [0, 1] defines the stochastic inte-
gral and we introduced friction terms Cl, γ, Cv‖ , Cθ, and
Cψ that are required to preserve the total energy when the
system is closed. P is the distribution function (probability
density) in (l, v‖, θ, ψ, μ) space.

As a result of the ergodic hypothesis [30], the spec-
trum of fluctuations driving diffusion is that of white noise
and interactions among different modes that are relevant
from a statistical standpoint are accounted of in this form.
Both diffusive transport and flows generated by convective
terms in the FPE play an important role in shaping the dis-
tribution function. The role of inward diffusion in building
up the density gradient has been discussed in detail in [11],
where dependence of density peak height and position on
strength of electromagnetic fluctuations has been demon-
strated.

6. Definition of the Stochastic Integral
and Time-Scale of Fluctuations
The objective of this section is to show that the defini-

tion of the stochastic integral, i.e. the value of the parame-
ter

α =
1
τ

τ∫
0

WdW =
D−1⊥
τ

τ∫
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

φθdt′
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ φθdt, (19)

where τ is an arbitrary time and we used dW⊥ = Γ⊥dt =
−D−1/2
⊥ φθdt, is ultimately determined by the ratio between

time-scale of fluctuations τ f and period of bounce motion
T . Indeed, when a fluctuation starts to act, the electric field
felt by a particle can be represented as:

φθ =

(
D⊥
τd

)1/2

e−t/τd , (20)

where τd is the typical decay time of the fluctuation. Inte-
grating equation (19) gives:

α =
1
2

(
1 − e−τ/τd

)2
=

1
2

[
1 − exp

(
−aLωb

δω f

)]2

. (21)

Here, we used the fact that the decay time is given by:

τd =
δ√
2
m T⊥

=
δ

a

√
2
m T‖
=

δ

av‖
=

2π
aLωb

, (22)

with δ the typical size of fluctuation domains in the di-
rection perpendicular to field lines, a2 = T⊥/T‖ the tem-
perature anisotropy, T⊥ and T‖ the perpendicular and par-
allel temperatures respectively, L the typical bounce or-
bit length, ω f = 2π/τ f the frequency of the fluctuations,
and we set τ = τ f . The limiting cases of interest are:
limωb/ω f→0 α = 0 and limωb/ω f→∞ α = 1/2. Consequently,
we expect fast fluctuations ωb/ω f → 0 to be better repre-
sented by the choice α = 0. α = 1/2 will instead describe
slow oscillations.

7. Conservation of Bounce Action and
Strength of Diffusion
In order to relate emergence of temperature anisotropy

and destruction of the second adiabatic invariant, we need
to understand the conditions under which the bounce ac-
tion J‖ is preserved for the system under examination. A
direct calculation shows that:

dJ‖
dt
= T

(
φθ〈(μB + eφ)ψ〉 − 〈φθ〉 (μB + eφ)ψ

− q〈φθ〉 (μB + eφ)l + 〈φθ〉mv2
‖ql

)
. (23)

Here, 〈 〉/T is the bounce orbit average, with T =∮
ds/v̄‖ = 2π/ωb the period of the bounce oscillation.

Two important conclusions can be drawn from the re-
sult (23). If the period of the bounce oscillation is small
enough with respect to the time scale under consideration,
dJ‖/dt can be neglected. The additional requirement of a
small electric field φθ results in even smaller variations of
J‖. However, when electromagnetic fluctuations are fast
enough, i.e. their time scale τ f is such that τ f � T , and
when their amplitude is not negligible (eφ � H), the sec-
ond adiabatic invariant is destroyed. The latter condition
correspond to a large diffusion parameter D⊥ ∼ φ2

θ/τ f and
the choice α = 0 in the FPE.

Taking the bounce orbit average, one recovers the
classical result 〈dJ‖/dt〉 = 0 of [31]. However, we remark
that dJ‖/dt is well represented by its bounce orbit average
only for slow and weak fluctuations φθ.

8. Temperature Anisotropy
In the following we investigate the numerical solution

to equation (18), focusing on the evolution of temperature
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Fig. 1 Spatially averaged normal and parallel temperatures T⊥(eV) and
T‖(eV) as a function of time t(a.u.). s f stands for strong and fast
diffusion. ws for weak and slow diffusion. The former case has
a diffusion parameter D⊥ ten times greater than the latter.

profiles. We assume a Maxwell-Boltzmann distribution
as initial condition and take Dirichlet boundaries. Axial
symmetry ∂θ = 0 is also used. We will show that self-
organization of a peaked profile goes together with prefer-
ential heating of the normal temperature:

T⊥ (l, θ, ψ) =

∫
μBPdv‖dθcdμ∫

Pdv‖dθcdμ
. (24)

Indeed, when particles climb up the magnetic field as a
result of inward diffusion, they preserve the magnetic mo-
ment μ: the stronger the magnetic field, the larger the nor-
mal kinetic energy μB stored in the cyclotron gyration. At
the same time, particles with enough parallel kinetic en-
ergy mv2

‖/2 have a high probability of exiting the bound-
aries (falling into the atmosphere of the planet) as the mag-
netic field is not strong enough to reverse their motion.
With a stronger diffusion, the process speeds up and this
translates in a systematic depopulation of particles with
high parallel temperature:

T‖ (l, θ, ψ) =

∫
m
2 v2
‖Pdv‖dθcdμ∫

Pdv‖dθcdμ
. (25)

The scenario described above is reproduced numerically in
Fig. 1, where two cases with different diffusion strength D⊥
are compared (in the first case, D⊥ is ten times the value it
takes in the second one).

It is also instructive to look at the radial profiles of the
temperatures T⊥ and T‖ in the two cases described above
(Fig. 2). The preferential heating effect of the normal tem-
perature due to inward diffusion is evident.

9. Conclusion
In this paper, continuing the efforts made to under-

stand the physics of self-organization in magnetospheric

Fig. 2 (a): radial profiles of T⊥(eV) and T‖(eV) for the weaker diffu-
sion parameter case. (b): radial profiles of T⊥(eV) and T‖(eV)
for the stronger diffusion parameter case. The 0 indicates the ini-
tial distribution. Here, r is the radial coordinate of a cylindrical
reference system (r, z, θ). z is set to zero.

plasmas [6, 8–11, 24], we make important progress in
the theoretical description of inward diffusion. Topolog-
ical constraints dictate a natural reduction of phase space.
However, there are several delicate problems, part of them
yet unsolved, that have to be addressed when building a
statistical mechanics on the foliation (existence of invari-
ant measure, ergodicity, notion of entropy). Nevertheless,
it is this reduced mechanics that is able to cast inward diffu-
sion, and more generally self-organization phenomena, in
the classical perspective of thermodynamics. Then, spatial
gradients, temperature anisotropies, and preferential heat-
ing are just a consequence of a coordinate transformation
connecting Cartesian coordinates to the foliation.
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