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The flux of parallel momentum by parallel shear flow driven instability is calculated with the self-consistent
mode dispersion. The result indicates that the diffusive component has two characteristic terms: νD1 ∼ ṽ2x/γ(0) and
νD2 ∼ ṽ2x/(k2

‖D‖) where ṽx is the fluctuation radial velocity, γ(0) is the growth rate of the mode, k‖ is the parallel
wave number, and D‖ is the electron diffusivity along the magnetic field. νD1 results when the parallel flow shear
is above the threshold, while νD2 is important around the marginal state. Since typically νD1 � νD2 ∼ Dn,
where Dn is the particle diffusivity, the Prandtl number (≡ ν/Dn) becomes large when parallel flow shear driven
instability occurs. This feature may explain the experimental observation on the difference between profiles of
density and toroidal flow in edge and SOL plasmas.
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Flow along the magnetic field (parallel flow) is an im-
portant element to understand the behavior of magnetized
plasmas. While parallel flows have beneficial effect for fu-
sion plasmas by controlling transport, parallel flow shear
itself can drive instability and be a source for fluctuation.
The parallel flow shear driven instability was predicted by
D’Agnelo [1], and the cases of NBI plasmas and SOL plas-
mas were analyzed [2–4]. It was shown that the Prandtl
number is of order of unity in the case of drift waves [5].
More recently, the impact of parallel flow shear driven
instability on particle transport and parallel momentum
transport is reported from basic experiment [6], and anal-
ysis has been performed [7]. However, while the earlier
studies reveal relevant contribution in transport fluxes and
production rate, an approximate value for the frequency
ω ∼ ω∗, where ω∗ is the drift wave frequency, was used.
Though this is true for an order of magnitude estimate, the
fluctuation of interest has a dispersion relation ω = ωk,
and this has to be taken into account for more consistent
analysis. Moreover, measurements of toroidal plasma flow
near edge reported the difference between profiles of den-
sity and toroidal flow [8]. This motivates the theoretical
evaluation of turbulent Prandtl number.

In this work, we present an analysis of transport of
parallel flows by parallel flow shear driven instability, with
the dispersion relation of the mode treated consistently. In
order to address this, we use a fluid model [7] with the evo-
lution of vorticity, density, and parallel flows:
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Here d/dt = ∂t + (c/B)ẑ × ∇φ, φ is the electrostatic poten-
tial, ρs is the ion sound Larmor radius, D‖ = v2the/νe is the
parallel diffusivity of electrons, νe is the electron collision
frequency, ne is the electron density, n0 is a reference den-
sity, vi is the ion fluid velocity, cs is the ion sound speed.

Linearization of the model equation yields the disper-
sion relation as:

ρ2
s k2⊥

ik2
‖D‖
ω =

−(ω − ω∗e)ω + (c2
s k2
‖ − csk‖ρsky〈v‖〉′)

(ω + ik2
‖D‖)ω − c2

s k2
‖

.

(4)

Here ω∗e = ky(ρs/Ln)cs, k2⊥ = k2
x + k2

y , and L−1
n = −〈n〉′/n0

is the density scale length. Equation (4) is solved per-
turbatively using the inverse of the adiabaticity parameter
ω∗e/(k2

‖D‖)  1. For parallel flow shear driven mode, the
dispersion relation is:
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Basic feature of the instability is obtained from the zeroth
order growth rate and is reported in literature [7, 9]. Here
note that the onset of the instability requires parallel flow
shear needs to be large enough to make Dv > 0. We also
note that the parallel wave number should not be too large
to avoid the stabilizing effect due to acoustic wave cou-
pling. The adiabaticity condition ω∗e/(k2

‖D‖)  1 is guar-
anteed with the large parallel electron diffusivity. The next
order correction is calculated as
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The flux of parallel momentum is calculated. General
expression is obtained by using the quasilinear theory [10]
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Using the dispersion relations Eqs. (5), (6), (8) and (9), the
momentum flux reduces to

Πx‖
c2

s
= −

∑
k

kyρs

csk‖
γ(0)(1 + k2

⊥ρ
2
s )

∣∣∣∣∣∣
eφ̃k

Te

∣∣∣∣∣∣
2

−
∑

k

k2
yρ

2
s

k2
‖D‖

k2⊥ρ2
s

2(1 + k2⊥ρ2
s )

∣∣∣∣∣∣
eφ̃k

Te

∣∣∣∣∣∣
2

〈v‖〉′

+
∑

k

kyρscsk‖
k2
‖D‖

k2⊥ρ2
s (2 + k2⊥ρ2

s )

2(1 + k2⊥ρ2
s )

∣∣∣∣∣∣
eφ̃k

Te

∣∣∣∣∣∣
2

. (11)

Note that in the adiabatic limit, only the first term remains
finite. When parallel flow shear exceeds the critical value,
this term is approximately given as
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This is diagonal, diffusive flux −νD1〈v‖〉′ with the viscosity
given by

νD1 ∼ ṽ
2
x

γ(0)
. (13)

The second term in the momentum flux is also related to
the diffusive component, with the viscosity

νD2 ∼ ṽ2x
k2
‖D‖
. (14)

There may be a competing effect from the residual stress,
the last term in the momentum flux.

The viscosity induced by the parallel flow shear driven
instability has two characteristic values, νD1 and νD2. The
difference in the viscosity may be used to apply parallel
flow shear driven instability to experiment. Since typically
k2
‖D‖ � ω∗ ∼ γ holds, we have νD1 � νD2. Thus, once

the parallel flow velocity exceeds the critical value, paral-
lel flow shear driven modes appear and induce the large
viscosity νD1 to relax the parallel flow profile. Around
the marginal state, the first term of the momentum flux
is small, and the profile relaxes due to νD2. Defining the
Prandtl number Pr ≡ νD/Dn with the particle diffusivity
Dn ∼ ṽ2x/(k2

‖D‖), this feature is summarized as Pr � 1
when parallel flow shear driven instability appears, while
Pr ∼ O(1) when the parallel flow shear is around the crit-
ical value. The large Prandtl number can induce a broader
profile of toroidal flow than that of density profile. This
can be one of the reasons for the broader profile of toroidal
flow in SOL plasmas, which was reported in [8]. In ad-
dition, variation of Prandtl number might introduce a new
mechanism in profile formation near edge and SOL, as has
been theoretically pointed out in conjunction with the den-
sity peaking phenomena [11].

In summary, we presented an analysis of the flux of
parallel momentum driven by parallel flow shear driven
instability, with the mode dispersion treated consistently.
The results indicate that the viscosity on the flow has two
typical values. Above the critical velocity shear, the vis-
cosity is larger than the particle diffusivity, so the Prandtl
number is larger than one. On the other hand, if the shear is
close to the marginal, the Prandtl number is ∼ O(1). These
features may be important to understand the difference in
the profile structures of toroidal flow and density reported
from experiments.
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