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This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space
field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treat-
ment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field
configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion
Temperature Gradient (ITG) instability and collisionless damping of zonal flow.
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1. Introduction
Five-dimensional gyrokinetic (GK) global simulation

is considered to be an essential tool to understand micro-
scale instability and associated turbulent transport phe-
nomena including the profile stiffness/resilience and trans-
port barrier formation. While many GK codes already ex-
ist, most of them rely on particular configurations or con-
straining hypotheses to simplify the equation systems.

We have developped a new global full-f toroidal
GK Vlasov code, GKNET (GyroKinetic Numerical Ex-
periment of Tokamak), based on a rigorous Hamiltonian
derivation of the Vlasov equation and a field solver in
which the gyro-averaged operators are computed in real
space [1] without any simplification (Pade approximation,
constant temperature profile etc). An important property of
this method is that it can be used with all sort of configu-
rations and is independent of the coordinate system (polar
or Cartesian coordinates in the poloidal plane).

This paper is organised as follows. The theoretical
model used as well as the Vlasov part of the solver is de-
scribed in section 2. Section 3 describes extensively the
general idea of the computation of the gyro-averaging op-
erators in real space. The implementation and numerical
aspects are presented in section 4. Finally the simulations
used to benchmark the code and numerical results are given
in the section 5.

2. Physical Model
The gyrokinetic equations are derived in the 5D gyro-

centre coordinate system (R, μ, v//) where R denotes the
position of the guiding center, μ = msv2⊥/(2B) the mag-
netic momentum, v// the parallel velocity and all variables
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are averaged over the gyro-angle α. The code was orig-
inally developed using polar coordinates in the poloidal
plane R = (r, θ, φ) for initial testings, but it was later
changed to Cartesian coordinates R = (R, Z, φ) in order to
deal with non circular domains, avoid difficulties that arise
near the magnetic axis (high coefficients and prohibitively
strict CFL conditions). The gyrokinetic Vlasov equation
which describes the evolution of the guiding center distri-
bution fs of the specie concerned is derived using Hamil-
tonian mechanics [2] as:

∂ fs
∂t
+ Ṙ · ∂ fs

∂R
+ v̇//
∂ fs
∂v//
= 0, (1)

where the two time derivatives Ṙ and v̇// are defined as:

Ṙ = v//b +
1

msB∗
//

b

×
⎛⎜⎜⎜⎜⎜⎝es∇ 〈Φ〉x + E′

B
∇B +

v2
//

B
(∇ × B) × b

⎞⎟⎟⎟⎟⎟⎠ , (2)

v̇// =
−1

msB∗
//

B∗ · (es∇ 〈Φ〉x + μ∇B) , (3)

with E′ = msv2
// + μB, ms and es the mass and charge of the

considered specie and where B = Bb denotes the magnetic
field of direction given by the unit vector b, B∗// = B∗ · b is
the parallel component of B∗ = B + (Bv///Ωs)∇ × b with
Ωs = esB/ms. The notation 〈Φ〉x refers to the (simple)
gyro-averaging (from the particle coordinates x to gyro-
center coordinates R):

〈Φ〉x (R) =
1

2π

∫
Φ(x)δ(R + ρ − x)dxdα. (4)

The electrostatic potential Φ is given by the GK quasi-
neutrality condition:
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ei

Ti
(Φ − 〈〈Φ〉〉) + e

Te

(
Φ −Φ

)
=

m2
i

n0

∫
B∗ 〈 fi − f0〉R dv//dμ, (5)

with f0 the equilibrium distribution Ti and Te the ion and
electron temperature, n0 the equilibrium density and Φ is
the magnetic flux surface averaging of Φ. The notation
〈·〉R, similar to the one seen previously, here corresponds
to the simple gyro-averaging from gyro-center coordinates
R to the particle coordinates x:

〈 f 〉R (x, μ, v//) =
1

2π

∫
f δ(R + ρ − x)dRdα, (6)

while 〈〈·〉〉 corresponds to the so called double gyro-
averaging:

〈〈Φ〉〉 (x) =
1

2π

∫
〈Φ〉x fMδ(R+ ρ− x)dRdαdμ, (7)

with fM a Maxwellian in v⊥, slowly varying in R such
f0’s dependence is of the form f0(R, 0, v//) fM(R, μ) (i.e. a
Gaussian distribution of variance the thermal velocity vth).
These two operators can be easily approximated in Fourier
space in the case of Cartesian coordinates (or locally):

〈̂Φ〉k = Φ̂kJ0

(
k⊥v⊥
Ωs

)
, (8)

where the subscript has been dropped to include both 〈 f 〉R
and 〈Φ〉x and

〈̂〈Φ〉〉k = Φ̂kΓ0

⎛⎜⎜⎜⎜⎜⎝
(

k⊥vth

Ωs

)2⎞⎟⎟⎟⎟⎟⎠ . (9)

For circular configurations of radius a, the code also
utilises an equilibrium function as introduced in [3], a
Maxwellian distribution slightly reshaped to minimise
poloidal flows. In this distribution, the small radius r is
replaced by the motion invariant:

r̄ = rp − q(rp)
rp
Ψ (r) − mqp

eB0rp

(
Rv// − R0v̄//

)
, (10)

with rp = a/2 the half radius, Ψ (r) = −B0
∫ r

rp

r′dr′
q′ and

v̄// = sign(v//)
√

2(E − μBmax)/m H(E − μBmax) (where H is
the Heavyside function).

3. Real Space Computation of the
Gyro-Averaged Terms of the GK
Quasi-Neutrality Condition
Numerically, the simple averaging of a field 〈Φ〉 at a

point P is simply computed as the average of Φ over a
given number of sample points M uniformly distributed on
a circular orbit of radius ρ = v⊥/Ωs (the green points on
the back circle in Fig. 1).

Instead of defining directly the double averaging 〈〈Φ〉〉
as defined in eq. (7), which is integrated over μ, let’s first

Fig. 1 Primary (black) and secondary (grey) circles used to
compute the simple and double gyro-averagings in real
space (blue and red points) for C = 1 radius and M = 3
points per circle.

consider the simpler case of the single radius double aver-
aging 〈〈Φ〉〉ρ (before integration). It is simply the composi-
tion of two simple averagings and can thus be performed
by sampling over M2 “secondary points” on “secondary”
circular orbits centered on each “primary point” (the blue
and red points on the grey circles in Fig. 1). Since the
points are unlikely to be aligned with the grid, the values
are interpolated. This interpolation is the only geometry
dependant part of the solver and can either be done in 2D
(in the poloidal plane only) or in 3D, allowing to take into
account the non perpendicularity of the magnetic field lines
to the poloidal plane.

This single radius double averaging 〈〈Φ〉〉ρ needs to
be multiplied by a Maxwellian and integrated over μ =
msv2⊥/(2B) to obtain the actual averaging 〈〈Φ〉〉 as it appears
in the GK quasi-neutrality condition (5). Numerically, this
integration is approximated by a weighted sum of 〈〈Φ〉〉ρ
for C given radii:

〈〈Φ〉〉 �
∑

c j 〈〈Φ〉〉α jk⊥ρi
, (11)

where the 2C coefficients c j and α j are computed numeri-
cally to minimise the L∞ error of this approximation under.

Now that the simple and double gyro-averagings have
been properly defined, we show the numerical error of
these two methods. The numerical error originates from
three approximations: the weighted sum explained above,
the interpolation error (as the points are not aligned on
the grid) and the discrete averaging over particles’ orbits.
While it is clear that the first two are controlled respec-
tively by taking more circles and higher order interpola-
tions, the last one requires a few calculations to clarify to
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Fig. 2 Exact result of the simple averaging of a mode k⊥ (blue)
and the error terms for various number of points.

what extent the number of points M controls the error.
As stated in equation (8), the simple averaging is eas-

ily expressed in Fourier space for a mode k⊥ as 〈̂Φ〉k =
J0(k⊥v⊥/Ωs)Φ̂k. Fortunately, the numerical value of our
simple averaging is also easy to express this way:

〈̂Φ〉k/Φ̂k = J0

(
k⊥v⊥
Ωs

)

+ JM

(
k⊥v⊥
Ωs

)
+ J−M

(
k⊥v⊥
Ωs

)

+ J2 M

(
k⊥v⊥
Ωs

)
+ J−2 M

(
k⊥v⊥
Ωs

)
+ ... (12)

Hence, using the fact that JM = (−1)M J−M , the first
error term will be either 2JM(k⊥v⊥/Ωs) for M even or
2J2 M(k⊥v⊥/Ωs) for M odd. In a numerical simulation
where k⊥v⊥/Ωs is finite, not so many points are necessary
to keep this error close to 0 (cf. Fig. 2) especially if it is
an odd number. As all variables in the field solver are in-
tegrated over v⊥, the high relative error in one of the the
narrow intervals around J0’s zeros is never an issue in prac-
tice.

4. Numerical Resolution of the GK
Quasi-Neutrality Condition
Once the matrices for the simple and double gyro-

averagings have been computed using the methods pre-
sented above, the GK quasi-neutrality condition (5), can be
written in a matricial form (assuming Te = Ti and ei = e
for simplicity) as 2Φ − AΦ = C where A is the matrix
for the double averaging operator and C includes the RHS
(the flux averaging term has been dropped temporarily).
Although the GK quasi-neutrality condition is only a 3-
dimensional equation, solving this equation numerically
can be a heavy task as the linear system is quite large (Nϕ
systems of size Nr · Nθ or NR · NZ , with Nϕ the number of
mesh points in the φ direction etc) and the large diameter
and complexity of the orbits used in the simple and dou-
ble averagings reduce the sparsity of the matrices. There-
fore, instead of usual linear solving methods (LU decom-
position, Cholesky decomposition, etc), a specificity of the
equation is used to solve it through a fix point method us-

ing the form:

C + (A − 1)Φ = Φ. (13)

Starting from an initial guess of the solution Φ0, the
relation Φn+1 = C + (A − 1)Φn will converge towards a
solution if and only if A − 1 is a contractor (the absolute
value of all eigenvalues are strictly smaller than 1). Fortu-
nately, as can be seen in equation (9), the Fourier transform
in Cartesian coordinates diagonalises the double averaging
operator, making its eigenvalues explicit, the eigenvalues
of A−1 are 1−Γ0(k2⊥) ∈ [0, 1]. If this confirms the converge
of the fixed point method, each iteration only reduces the
distance to the solution by a factor 1− Γ0

(
k2⊥,max

)
which is

likely to be close to 1, making the convergence potentially
very slow under this form. Adding (α − 1)Φ on each side
of the equation we obtain the form

1
α

{
C +

[
A + (α − 2)

]
Φ
}
= Φ, (14)

for which α can be used as a control parameter to improve
the convergence speed of the method. The optimal value
of this parameter can be easily calculated as

α =
‖A − 2‖2
〈A − 2, 1〉 . (15)

When reintroducing the magnetic flux surface average
term that was temporarily dropped, the additional term that
is evacuated by first solving the flux averaged version of
this equation, the so called Zonal Flow (ZF) equation:

2Φ − 〈〈Φ〉〉 −Φ = C i.e. (1 − AZF)Φ = C. (16)

The coefficients of the flux averaged double averag-
ing matrix AZF are computed from the coefficients of the
double averaging through a projection on an arbitrary ra-
dial line of the sampling points along the flux surfaces and
the system is solved by a simple LU method, being small
enough (1D) to allow such a simple method. If the flux
averaging of C and set up of this equation are simple in
polar coordinates for a simple circular configuration, the
computation is much harder in the general case, but the
computation time always remains small compared to the
rest of the code.

In terms of complexity, the fix point method usually
converges in about 6 iterations, independently of the mesh
numbers or physical parameters. The longest part of one
iteration is the computation of the double gyro-averaging
is equivalent to very optimised sparse matrix multiplica-
tion, making the total complexity of the order of O(N2⊥)
(with N⊥ the number of point in a poloidal plane), com-
pared to the O(N3⊥) of an LU resolution for instance. The
computation in real space of the double averaging is also
parallelised more efficiently than the matricial operations
involved in an LU resolution of a linear system making the
overall use of the fixed point method very advantageous.
Overall the parallelisation of the code is close to the ideal
case.
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Fig. 3 Linear mode growth rates versus kθρi for Cycle DIII-D
system compared with a synthetic result as found in [5]
(left) and poloidal cross section of the electric potential’s
most unstable toroidal mode (right).

5. Numerical Results
To verify the accuracy of the code, it was bench-

marked using two standard tests for gyrokinetic simulation
codes: the DIII-D base case [4,5] as well as a collisionless
zonal flow damping test.

The reference dimensionless parameters for the DIII-
D base case are: R0/LT = 6.92, R0/Ln = 2.2, rp/R0 = 0.18,
q = 1.4, s ≡ (r/q)(dr/dq) = 0.8 and Te/Ti = 1. Ad-
ditionally, the domain in velocity space was restricted to
−5vT i ≤ v// ≤ 5vT i and 0 ≤ μ ≤ 12.5B0/Te; the profile
q(r) = 0.85 + 2.18(r/a)2 was used so that q(rp) = 1.4
and ŝ(rp) = 0.8. Boundary conditions were set to 0 out-
side of the domain. The simulation was performed on a
grid (NR, NZ , Nϕ, Nv// , Nμ) = (64, 64, 128, 32, 16) us-
ing 9 points per circle and third order interpolations in the
field solver. The magnetic flux surface term in eq. (5) is
ignored for this type of simulations. As shown on Fig. 3,
our numerical results are in good agreements with results
obtained by other codes.

In the second benchmark test, an initial perturbation
of the form δ f = 10−3 sin

(
π
2 (1 − r/a)

)
leading to the col-

lisionless damping of Geodesic Acoustic Modes (GAMs).
Most parameters are the same as in the previous case, ex-
cept that R0/Lt = ∞, R0/Ln = ∞ (i.e. T = 1 and n0 = 1)
and q(r) = 1.5 + 1.5(r/a)2 leading to q(rp) = 1.9. The
expected residual value of the zonal flow as well as the

Fig. 4 Time evolution of the zonal flow potential compared with
the theoretical result as given in [6, 7].

damping rate have been theoretically calculated [6, 7] and
are plotted alongside our numerical result on Fig. 4 show-
ing a very good agreement.

6. Conclusion
A new 5D full-f GK Vlasov code, GKNET, has been

developed, using real space computation of the gyro-
kinetic operators. It operates under very general assump-
tions, allowing proper treatment of finite Larmor radius
effects and any magnetic configuration. Benchmarks test
validate the accuracy of the code in good agreements with
the results found in the literature. In the future, this code
will be used in realistic magnetic configurations such as D-
shape, X-point and negative D-shape. We will also imple-
ment kinetic electrons to study ITG+TEM nodes in global
system, in which our rigorous treatment of FLR effects
may be essential.
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