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The excitation condition for ion-temperature-gradient (ITG) instabilities in linear devices is investigated us-
ing a gyro-fluid equation. The finite-Larmor-radius effect is included in the model, which helps to stabilize ITG
instabilities. The critical values of η, which is the ratio of the lengths of the density gradient to the temperature
gradient, are obtained. Although the modenumbers of the most unstable modes are different with different dis-
charge gases, their critical values have almost the same η level close to 1.0. The results are compared with those
from the Hamaguchi–Horton model numerically and analytically.
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1. Introduction
Anomalous transport is one of the important issues

in magnetic confined plasmas. Competition of several
kinds of instabilities determines the formed turbulent struc-
ture, and the level of turbulent transport [1]. One of
the causes for turbulent transport is an ion-temperature-
gradient (ITG) driven microscopic instability (ηi mode)
[2]. It has been predicted to be unstable when ηi (=
L−1

T /L
−1
n ) exceeds some threshold, where the inverse of the

density gradient length and the ion temperature gradient
length are L−1

n (= −d(ln n0)/dr) and L−1
T (= −d(ln T0)/dr),

respectively. Analyses of the ITG instability using fluid
models and models including kinetic effects have been per-
formed [3–5].

In experiments with high-temperature plasmas, it is
difficult to identify the ITG instability because of the lim-
ited diagnostics available. Conversely, in laboratory plas-
mas using linear machines, detailed measurements of fluc-
tuations can be conducted to identify the ITG instability
[6]. In PANTA device [7], an ion sensitive probe and a
laser induced fluorescence are used to measure temperature
fluctuations. Furthermore, by employing phase tracking,
nonlinear waveforms of fluctuations can be identified [8]
to evaluate the heat flux. Numerical simulations for the
linear growth rate of the ITG instability have also been in-
vestigated using the fluid model in PANTA, which shows
that the mode with k⊥ρs ∼ O(1) is unstable even with a low
ion temperature [9]. Here, k⊥ and ρs are the wavenumber
in the perpendicular direction and the effective Larmor ra-
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dius, respectively. Therefore, it is necessary to include the
finite-Larmor-radius (FLR) effect so as to perform a more
quantitative analysis.

The target of this research is to clarify the excitation
condition of ITG instabilities in the linear device PANTA.
The ion Larmor radius is comparable to the plasma radius
in linear devices, so we are developing a simulation code
using a gyro-fluid model to include the FLR effect. By
linearizing the model, the excitation condition of the ITG
instability is evaluated. The local model is used for the first
step. This paper is organized as follows. In the next sec-
tion, the set of gyro-fluid equations is described. In Sec. 3,
the excitation condition of the ITG instability is evaluated
by local linear analyses. Comparison between the gyro-
fluid and fluid model is performed in Sec. 4. The results
are summarized in Sec. 5.

2. Model Equations
A set of gyro-fluid equations is derived by taking

the moments of the following nonlinear electrostatic gyro-
kinetic equation in the velocity spaces [10]:

∂F
∂t
+ ∇ ·

[
F

(
v//b̂ + J0vE

)]
− ∂
∂v//

( e
m

Fb̂ · ∇J0Φ
)

= 0, (1)

where F is the distribution function, v// is the parallel ve-
locity, b̂ is the unit vector in the direction parallel to the
magnetic field, vE is the E × B drift velocity, Φ is the elec-
trostatic potential, and J0 is a linear operator to perform
gyro-averaging. The target plasma has a cylindrical con-
figuration with a homogeneous magnetic field parallel to
the axial direction, so the magnetic curvature terms can
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be eliminated. Applying gyro-kinetic ordering, the linear
forms of the equations are as follows:

dn
dt
+ ∇//n//

(
1 +
ηi⊥
2
∇̂2
⊥
) 1

Ln

∂Ψ

r∂θ
= 0, (2)

du//
dt
+ ∇//(nτ// + T// + Ψ ) = 0, (3)

1
τ

dT
dt
+ ∇//(2u + q) + ηi//

1
Ln

∂Ψ

r∂θ

= −2vii

3τ
(T// − T⊥), (4)

1
τ⊥

dT⊥
dt
+ ∇//q⊥

[
1
2
∇̂2
⊥ + ηi⊥

(
1 + ˆ̂∇2

)] 1
Ln

∂Ψ

r∂θ

=
vii

3τ
(T// − T⊥), (5)

where n is the ion density, u is the ion velocity, Ψ is
the gyro-averaged potential in which Ψ ≡ Γ1/2

0 Φ and
τ = T/Te, T is the ion temperature, Te is the electron tem-
perature, q is the heat flux, νii is the collision frequency
between the ions, and ρs is the effective Lamor radius eval-
uated from the electron temperature. The subscripts // and
⊥ represent the quantities parallel and perpendicular to the
direction of the magnetic field, respectively. Pade and 〈J0〉2
= Γ0 approximations are applied, where

Γ1/2
0 =

1(
1 + bτ⊥

2

) , (6)

bτ⊥ = −∇2
⊥ = τ⊥

(
k2

r + k2
θ

)
. (7)

Collisions are dominant in this system, and higher order
moments of Eq. (1) give simplified forms of the heat flux
as follows [11]:

q// = − 3
viiτ⊥

∇//T//, (8)

q⊥ = − 1
viiτ⊥

∇//T⊥. (9)

The quasi-neutrality relation is given to be

Γ0

(
n +

1
τ⊥
∇2⊥
2

T⊥
)
− (1 − Γ0)

Ψ

τ⊥
= Ψ. (10)

The FLR effect gives the difference between the local
density and potential. Our gyro-fluid model consists of
Eqs. (2 - 5) and (10). The FLR effect is included in Ψ , ∇̂2⊥
and ˆ̂∇2 terms, where

∇̂2⊥
2
Ψ ≡ −

bτ⊥
2(

1 + bτ⊥
2

)Ψ, (11)

ˆ̂∇2Ψ ≡
bτ⊥

2

(
bτ⊥

2 − 1
)

(
1 + bτ⊥

2

)2 Ψ. (12)

The following normalizations are used:

r/ρs → r, (13)

Ωcit → t, (14)(
n1

n0
,

u//
cs
,

T//1
Te
,

T⊥1

Te
,

q//1
n0T//0cs

,
q⊥1

n0T⊥0cs
,

eΨ
Te

)
→ (n, u//,T//,T⊥, q//, q⊥, Ψ ), (15)

where Ωci = eB/mi is the ion cyclotron frequency, cs =

Ωciρs is the ion sound velocity, and the subscripts 0 and 1
denote the equilibrium and fluctuating component, respec-
tively.

3. Linear Growthrate Analysis
Local linear analyses are conducted to evaluate the ex-

citation condition of the ITG instability. To linearize the set
of equations, the differential operators d/dt, ∇// and ∇⊥ are
replaced by λ, ikz, and ik⊥, where the real and imaginary
part of λ are the growthrate and frequency, kz and k⊥ are the
wavenumber in the parallel and perpendicular direction, re-
spectively. This is a local model, so the results are basically
the same as those with a slab geometry. The size of the
plasma is reflected in the values of the mode numbers. The
axial mode number is assumed to be 1, which gives kz =

2π/l, where l is the device length. The radial and azimuthal
wavenumbers are assumed to be the same (kr = kθ), which
gives k2⊥ = 2k2

θ = 2(m/r)2, where m is the poloidal mode
number. The radial wavelength is approximately 2a for the
fundamental ITG modes [9], so this assumption is used.
This is a simplification for qualitative understanding, and
the global mode analysis including the radial structure will
be considered in future work. For linear analysis, experi-
mental parameters in PANTA are used: l = 4.0 m, plasma
radius a = 7.0 cm, density n = 1.0×1019 m−3, Ln = 7.0 cm,
νii = 350 s−1, magnetic field B = 0.1 T, which gives Ωci/2π
= 1.5 MHz. Temperatures Te = 3 eV and Ti = 0.3 eV give
ρs = 1.1 cm and ρi = 3.5 mm. With these parameters, ρi/Ln

= 0.05� 1.0, kzρi = 5.5 × 10−3 � 1.0 and k⊥ρi = 0.02�
1.0, so gyro-kinetic ordering is satisfied. The other param-
eters for the analysis are τ and ηi, which correspond to the
ratios between ions and electrons. Here, linear growthrates
at r = a/2 are calculated.

First, the excitation conditions with different dis-
charge gases are analyzed. In Fig. 1, the ion mass depen-
dences of critical ηc of the modes with m = 1 - 5 are shown.
The cases of helium, neon, and argon are plotted. The min-
imum values of ηc are close to 1 even though the ion mass
numbers are different. This result suggests that there is no
preferential gas for the ITG excitation. However, mode-
numbers of most unstable modes depend on the discharge
gasses (He: m = 5, Ne and Ar: m = 2), so the azimuthal
mode structure can be different for fluctuations.

Next, temperature dependence and its gradient length
are evaluated. In Fig. 2, a contour plot of the growth rate
in the τ and η space, assuming η// = η⊥ (= η) and τ// = τ⊥
(= τ) is shown. The critical value ηc for the ITG instability
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Fig. 1 Ion mass dependences of critical ηc, when τ = 1. Those
of modes with m = 1 - 5 are plotted.

Fig. 2 Contour plot of the growth rate in the τ and η space. The
boundary for unstable ITG mode is shown. The cross
represents one set of experimental conditions in PANTA.

changes depending on the magnitude of τ. The minimum
ηc = 0.81 is given with τ = 0.15, and ηc increases as τ in-
creases (e.g., ηc = 0.98, when τ = 1.0). When τ is low (τ
� 0.15), ηc is large and the ITG mode is rarely unstable.
The cross in Fig. 2 indicates one set of experimental con-
ditions in PANTA (τ = 0.1, η = 0.2 with argon discharge).
It suggests that a larger temperature gradient is needed to
observe the excitation of the ITG mode in PANTA.

Characteristic dependencies of the threshold value are
evaluated next. Our model includes the FLR effect, which
depends on the magnitude of variable b, so the FLR effect
is investigated by varying b. In Fig. 3, a contour plot of
the growthrate in the b and η space is shown. The critical
ηc increases with b, so the FLR effect stabilizes the ITG
mode. Notes that the PANTA parameter gives b = 0.8.
In addition, our model contains a thermal anisotropy as in
Eqs. (4) and (5), so the anisotropic case with η// � η⊥ can
be analyzed. In Fig. 4, a contour plot of the growthrate in
the η// and η⊥ space is shown. Fitting the critical boundary
to the linear equation αη⊥+η// = Const gives α = 2.1 ± 0.1.
The degree of freedom is 2 in the perpendicular direction,

Fig. 3 Contour plot of the growth rate in the b and η space. This
is the case with τ = 1.0 of argon plasma.

Fig. 4 Contour plot of the growthrate in the η// and η⊥ space.
This is the case with τ = 1.0 of argon plasma.

which corresponds to the obtained α value.

4. Comparison of the Gyro-Fluid and
Fluid Model
We have used the gyro-fluid model to evaluate the ITG

excitation condition in PANTA. Conversely, the ITG anal-
yses have been conducted using the Hamaguchi–Horton
(H–H) model, which consists of fluid equations [12, 13].
The results from the H–H model show that the critical tem-
perature gradient is smaller than that with the gyro-fluid
model. Comparison between these two models is shown in
this section.

The H–H model solves three fields with the ion conti-
nuity equation, momentum conservation equation, and en-
ergy conservation equation:

∂

∂t

[
1 − ∇2

⊥
]
φ + ∇//u// + 1

Ln

∂φ

r∂θ
+ τ

1
LP

∂

r∂θ

(
∇2
⊥φ

)
= 0, (16)
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Fig. 5 Contour plot of the growthrate in the τ and η space with
the H–H model. This is the case of argon plasma.

∂u//
∂t
+ ∇//(φ + P) = 0, (17)

∂P
∂t
+ γτ∇//u// + τ 1

LP

∂φ

r∂θ
= 0, (18)

where P is the ion pressure. For comparison, a reduced set
of the gyro-fluid model equations is obtained with isotropic
temperature T// = T⊥ = T as

∂

∂t

[
1 −

(
1 +

1
τ
∇2
⊥

)]
φ + ∇//u// + 1

Ln

∂φ

r∂θ

+
1
2

1
LT

∂

r∂θ
(∇2
⊥φ) = 0, (19)

∂u//
∂t
+

[
1 + τ + bτ

(
1 +

1
τ

)]
∇//φ +

(
1 +

bτ
2

)
∇//T

= 0, (20)

∂T
∂t
+

2
3
τ∇//u// + τ 1

LT

∂φ

r∂θ
= 0. (21)

Here, the heat-flux terms and the FLR terms in Eqs. (2 - 5)
are neglected, and the FLR term with variable b is only
retained in the quasi-neutrality relation given in Eq. (10).
Equation (21) is obtained by adding Eqs. (4) and (5). The
basic frameworks of the two sets of the models are similar,
though some of the coefficients are different.

In Figs. 5 and 6, contour plots of the growthrate in the
τ and η space with the H–H model and the reduced gyro-
fluid model, respectively, are given. Critical ηc is much
smaller in the case with the H–H model than with the gyro-
fluid model. In Fig. 5 the mode is unstable even with η =
0, when τ is greater than 0.6. Figure 6 shows the same
level of critical ηc as in Fig. 1 even with this reduced set of
equations, although the dependency on τ becomes weaker.

The results differ because of the different origins of
the term in each model, i.e., the polarization velocity term
in the H–H model, and the gyro-averaging in the gyro-fluid
model. In the H–H model, the polarization term can cou-
ple with the diamagnetic drift term, which is not included
in the gyro-fluid model. When ω � ω∗, the analytical so-

Fig. 6 Contour plot of the growthrate in the τ and η space with
the reduced gyro-fluid model. This is the case of argon
plasma.

lutions become

ω = ±kz

√
τ (1 + η)

1 − bτ (1 + η)
− γτ, (22)

with the H–H model, and

ω = ±kz

√(
1 +

bτ
2

) (
τη

1 − bτη/2
− 2

3
τ

)
, (23)

with the reduced gyro-fluid model, where ω∗ = kθ/Ln is the
diamagnetic drift frequency. Critical ηc is obtained to be

ηc =
γ

1 + γbτ
− 1, (24)

with the H–H model, and

ηc =
2

3 + bτ
, (25)

with the reduced gyro-fluid model. By setting b = 0 and
using γ = 5/3, the condition for ITG excitation η > 2/3
can be derived from both models.

5. Summary
The excitation condition for the ITG instability in lin-

ear device PANTA has been investigated using the gyro-
fluid model. Linear stability analyses show the dependen-
cies of the linear growthrate on the ion mass, the temper-
ature gradient, the magnitude of the FLR effect, and the
thermal anisotropy. Although the modenumbers of the
most unstable modes differ for different discharge gases,
their critical values have almost the same η value, i.e.,
∼1.0. The results from the gyro-fluid model and the H–
H model differ owing to the origin of the ∇⊥ terms. From
the gyro-fluid model, η is needed to be four times larger in
order to observe the ITG instability in PANTA.
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