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Applying the generalized Elsasser variables (GEV) decomposition method [S. Galtier, J. Plasma Phys. 72,
721 (2006)] and using a dissipation-scale adaptive, wavelet-like shell decomposition method and normalization
by dissipation-scale characteristics [K. Araki and H. Miura, PFR 8, 2401137 (2013)] to direct numerical sim-
ulation datasets, we analyzed the energy and transfer spectra of freely decaying, homogeneous, and isotropic
turbulence of incompressible magnetohydrodynamic (MHD) and Hall MHD (HMHD) media. The GEV de-
composition analysis directly confirmed the breaking of chiral symmetry and the dominance of the right-handed
polarized (whistler) modes over the left-handed polarized (ion cyclotron) modes, which Meyrand and Galtier had
found using indirect parameters [R. Meyrand and S. Galtier, PRL 109, 194501 (2012)].
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1. Introduction
Modeling of turbulent transport processes is regarded

as an important key in the study of fusion plasmas in large
torus devices. Hall magnetohydrodynamics (HMHD) is
well known as a simple model of the large-scale motion
of plasmas. As it contains the two-fluid effects, i.e., those
of finite ion skin depth, it is expected to cover small-scale
dynamics rather than the standard magnetohydrodynamic
(MHD) models.

In our previous studies [1,2], we found self-similarity
of the energy transfer process wherein the nonlinear in-
teraction is gradually suppressed and the mutual interac-
tion between the velocity and magnetic fields grows to
compensate for the suppression. This phenomenon sug-
gests that the coupling between the velocity and magnetic
fields is crucial to the energy transfer process. The gener-
alized Elsässer variables (GEV) decomposition, originated
by Galtier [3], seems to provide a clue to the problem, be-
cause GEV naturally decompose the function space of the
HMHD system according to its native linear wave modes.
In the present study, we apply the decomposition to direct
numerical simulation datasets.

2. Basic Equations
The time development of an incompressible HMHD

plasma motion is determined by the following equation:
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∂t �Z = �Q(�Z, �Z) + D̂�Z, (1)

where �Z = t(u b) is a pair of velocity and magnetic fields;
hereafter, called �Z-variables. The quadratic term �Q and the
dissipation term D̂�Z are defined by:

�Q(�Z1, �Z2) =
(
u1 × (∇ × u2) + (∇ × b1) × b2−∇P
∇ × (

(u1 − α(∇ × b1)) × b2
) )

,

(2)

D̂�Z = t(ν�u η�b), (3)

where P, ν, α, and η are generalized pressure, kinematic
viscosity, the parameter specifying the relative strength of
the Hall term effect, and resistivity, respectively. The oper-
ator �Q, which has its origin in the variational formulation
of a dissipationless HMHD system [4], is defined by the
following formula:〈�Z1

∣∣∣�Q(�Z2, �Z3)
〉

:=
〈�Z3

∣∣∣{�Z1, �Z2
}〉
, (4)

where
〈 ∗ ∣∣∣ ∗ 〉, {∗, ∗} are the inner products of �Z-variables

defined by〈�Z1
∣∣∣�Z2

〉
:=

∫
(u1 · u2 + b1 · b2) d3�x, (5)

and the Lie bracket whose definition is also given in [4].

3. Generalized Elsässer Variables
The GEV that orthogonally decompose the function

space of a pair of velocity and magnetic fields (u, b) are
given by the following formulas [3, 4]:

�Z sk
σk

(�k) = Ẑ sk
σk

(�k)
⎛⎜⎜⎜⎜⎝ φσk (�k)
λsk
σk (�k)φσk (�k)

⎞⎟⎟⎟⎟⎠ , (6)

c© 2015 The Japan Society of Plasma
Science and Nuclear Fusion Research

3401030-1



Plasma and Fusion Research: Regular Articles Volume 10, 3401030 (2015)

Ẑ sk
σk

(�k) =
ûσk (�k) + λsk

σk (�k) b̂σk (�k)

1 + λsk
σk (�k)2

, (7)

where φσk (�k), λsk
σk (�k), ûσk (�k), and b̂σk (�k) are the complex

helical waves (CHW) [5,6], the eigenvalues of the operator
M̂ given below, and the Fourier coefficients of the velocity
and magnetic fields, respectively, and are given as follows:

φσk (�k) = 2−1/2(eθ(�k) + iσkeφ(�k)) exp(2πi�k · �x), (8)

λsk
σk

(�k) = σk

(
sk

√
(πα|�k|)2 + 1 − πα|�k|

)
, (9)

f̂ σk (�k) =
∫

f (�x, t) · φσk (�k) d3�x, for f = u, b.

(10)

The symbols σk, sk, eθ(�k), and eφ(�k) are helicity (σk = ±1),
polarity (sk = ±1), and unit vectors in the θ- and φ-
directions of the spherical coordinate system in wavenum-
ber space, respectively. Note that in the standard MHD,
i.e., the limit α → 0 (where λsk

σk (�k) → σk sk), GEV’s or-
thogonality still remains.

The variables are derived as eigenfunctions of the lin-
earized dissipationless HMHD equations given by:

∂tu = B0 · ∇b − ∇P0, (11)

∂t b = B0 · ∇(u − α(∇ × b)
)
, (12)

where B0 and P0 are a uniform background magnetic field
and generalized pressure, respectively. Using Fourier coef-
ficients of the CHW expansion, we can write the equation
in the operator matrix form

∂

∂t

⎛⎜⎜⎜⎜⎝ ûσk (�k)
b̂σk (�k)

⎞⎟⎟⎟⎟⎠ = 2πiB0k‖M̂
⎛⎜⎜⎜⎜⎝ ûσk (�k)

b̂σk (�k)

⎞⎟⎟⎟⎟⎠ , (13)

where

M̂ =
(

O I
I −α∇×

)
=

(
O I
I −2πασk |�k|

)
. (14)

In the limit α → 0, the eigenfunctions converge to the
Alfvén waves of standard MHD systems.

A GEV function has two field-twisting direction pa-
rameters: σ and s. Parameter σ, which we call “helicity”
hereafter, determines the spatial variation of the rotation di-
rection of the snapshot of the velocity and magnetic fields.
When σ = +1 (resp. = −1), the direction of the snapshot
vector field rotates in the left-(right-)handed direction as
the spatial position moves in the wavenumber vector direc-
tion. However, parameter s designates the time develop-
ment of the rotation direction of the velocity and magnetic
fields when the uniform background magnetic field B0 ex-
ists. For s = +1 (resp. = −1), the field vector temporally
rotates in the left-(right-)handed direction with respect to
the wavenumber vector; hereafter, called “polarity.”

The eigenfunctions with polarity sk = +1 express the
ion cyclotron waves:

�Z+±(�k) =
λû±(�k) ± b̂±(�k)

1 + λ2

⎛⎜⎜⎜⎜⎝ λφ±(�k)
±φ±(�k)

⎞⎟⎟⎟⎟⎠ , (15)

Table 1 Differences between the decompositions of HMHD
modes.

decomposition combinations of GEV
ion cyclotron/whistler {Ẑ++, Ẑ+−}, {Ẑ−+, Ẑ−−}
conventional Elsässer
(in α→ 0 limit)

{Ẑ++, Ẑ−−}, {Ẑ−+, Ẑ+−}
complex helicity [7] {Ẑ++, Ẑ−+}, {Ẑ+−, Ẑ−−}

where λ = λ−−(�k) = ((πα|�k|)2 + 1)1/2 + πα|�k| is the largest
eigenvalue for an assigned �k and λsk

σk (�k) = σk skλ
−sk . As λ

is an increasing function of the wavenumber modulus |�k|,
the modulus of the phase velocity of the left-handed modes
B0k‖/λ decreases as the wavenumber increases. How-
ever, the eigenfunctions with sk = −1 express the whistler
waves:

�Z−±(�k) =
λb̂±(�k) ∓ û±(�k)

1 + λ2

⎛⎜⎜⎜⎜⎝ ∓φ±(�k)
λφ±(�k)

⎞⎟⎟⎟⎟⎠ . (16)

They are right-handed polarized and their phase velocity is
an increasing function of the wavenumber.

An important advantage of the introduction of GEV is
that the basic equations are given by the following simple
form in the limit ν, η→ 0 [3, 4]:

∂tẐ
sk
σk (�k) =

�k+�p+�q=�0∑
�p,σp,sp

∑
�q,σq,sq

((sk
σk
�k
∣∣∣∣∣∣sp
σp �p

∣∣∣∣∣∣sq
σq�q

))
λ
−sq
σq (�q)

λsk
σk (�k)2 + 1

× Ẑ sp
σp (�p) Ẑ sq

σq (�q), (17)

where an overline denotes the complex conjugate and the
symbol

((sk
σk
�k
∣∣∣∣∣∣sp
σp �p

∣∣∣∣∣∣sq
σq�q

))
is defined as follows:

((sk
σk
�k
∣∣∣∣∣∣sp
σp �p

∣∣∣∣∣∣sq
σq�q

))
:= α−1

((
λsk
σk

(�k)λsp
σp (�p)λsq

σq (�q)
)2 − 1

)
×

∫
�x∈M
φσk (�k) ·

(
φσp (�p) × φσq (�q)

)
d3�x. (18)

In the following, we consider the decomposition with
respect to polarity s using the following notations

�Z+ :=
∑
�k,σk

�Z+σk
(�k), �Z− :=

∑
�k,σk

�Z−σk
(�k), (19)

and we call them the “ion cyclotron mode” and “whistler
mode,” even when the Hall term parameter α vanishes.

Note that in the limit α → 0, the relations between
the conventional Elsässer variables and GEV are given as
follows:

z+ := u + b = Ẑ++(�k)φ+(�k) + Ẑ−−(�k)φ−(�k), (20)

z− := u − b = Ẑ−+(�k)φ+(�k) + Ẑ+−(�k)φ−(�k). (21)

Thus, each of the conventional Elsässer variables does not
directly correspond to the linear wave branch that connects
with the ion cyclotron or whistler mode. Possible combi-
nations of the GEV are summalized in Table 1.

3401030-2



Plasma and Fusion Research: Regular Articles Volume 10, 3401030 (2015)

Fig. 1 Time series of the normalized and shell-averaged energy
spectra of the GEV decomposed modes for the HMHD
case (α = 0.05). Left: the ion cyclotron modes, right:
whistler modes. Change in line colors from red to blue
denotes time development of spectra.

4. Time Development of Energy and
Transfer Function Spectra
In this study, we used the same snapshot data as those

used in Refs. [1] and [2]. The amplitudes and wavenum-
bers of the various spectra are normalized using the dis-
sipation rate of magnetic energy εB(t) = η

∫ |∇ × b|2d3�x
at each snapshot. To calculate the shell-averaged spectral
quantities, the wavenumber space is divided into the spher-
ical shell band with wavenumber ranges kη(t)/2( j+1)/2 <

k < kη(t)/2 j/2, where kη(t) = (εB(t)/η3)1/4 and j is a shell
index, hereafter. The combination of the normalization
and shell decomposition methods has been demonstrated
to clearly capture the self-similarity features of freely de-
caying turbulence [1].

In this study, we focused our attention on the com-
parison between an analysis of the standard u, b variables
and that based on the GEV decomposed modes. Numeri-
cal decomposition and reconstruction programs are coded
according to the Eqs. (15) and (16).

In Figs. 1 and 2, we plotted the time series of the nor-
malized and shell-averaged energy spectra of the ion cy-
clotron and whistler modes, which are defined by E(I)

j =

1
2
〈�Z+j ∣∣∣�Z+j 〉, and E(W)

j := 1
2
〈�Z−j ∣∣∣�Z−j 〉, respectively.

As can be seen from Eqs. (15) and (16), because
the velocity component of the ion cyclotron mode �Z+ is
weighted by λ for both the Fourier coefficient and the base
function and because the value of λ is an increasing func-
tion of the wavenumber modulus, the functional form of
their energy spectrum is expected to approach that of the
kinetic energy spectrum as the modulus of wavenumber in-
creases. An analogous tendency is expected between the
whistler mode �Z− and the magnetic energy spectra. In
Fig. 1 we show the spectra for the case where α = 0.05.
It can be verified by comparison with the spectra shown
in Fig. 3 of Ref. [1], that their functional forms obey our
expectation for higher wavenumber ranges (k � 0.3kη).

This tendency has an important implication. As is
shown in Ref. [8], the dominance of the whistler mode en-
ergies implies the spontaneous breaking of chiral symme-
try of small-scale motions. Although the method to extract
the mirror symmetry of fields is different, our results sup-

Fig. 2 Time series of the normalized and shell-averaged energy
spectra of the GEV decomposed modes for the MHD case
(α = 0). Shown are the mode branch of Alfvén waves
connected to (left) the ion cyclotron modes and (right)
the whistler modes. The color legend is the same as that
in Fig. 1.

port the results presented in Ref. [8].
For intermediate and lower wavenumber ranges (k �

0.3kη), λ gradually approaches 1 as the wavenumber de-
creases, i.e., the weights of the velocity and magnetic fields
become closer irrespective of polarity s; therefore it is ex-
pected that the functional profile of the GEV mode ener-
gies becomes some “averaged” form. However, numerical
results show tendencies whereby the functional forms of
the ion cyclotron (whistler) mode energy spectra have pro-
files close to those of the magnetic (resp. kinetic) energy.

For the standard MHD case (α = 0), we also com-
pared the kinetic/magnetic and the GEV energy spectra.
The functional profiles of the GEV energy spectra are ex-
pected to fall in an “averaged profile” of the kinetic and
magnetic energy spectra, because λ → 1 for α → 0, i.e.,
the contributions of the velocity and magnetic fields to the
amplitudes of the GEV modes (see Eqs. (15) and (16)) be-
come the same.

Comparing Fig. 2 with Fig. 3 of Ref. [1], we found that
the amplitudes and functional forms of the ion cyclotron
(whistler) mode energy spectra are very close to the mag-
netic (resp. kinetic) spectra. Although this result is very in-
teresting, elucidation of its implications will be discussed
in a future study.

We considered the GEV representation of the energy
transfer functions. In each panel of Figs. 3 and 4, we show
the energy transfer function spectra corresponding to those
in Figs. 1 and 2. The transfer of the kinetic, magnetic, ion
cyclotron mode, and whistler mode energies to the j-th
shell are given by

T (K)
j :=

〈t(u j 0)
∣∣∣�Q(�Z, �Z)

〉
,

T (M)
j :=

〈t(0 b j)
∣∣∣�Q(�Z, �Z)

〉
,

T (I)
j :=

〈�Z+j ∣∣∣�Q(�Z, �Z)
〉
,

T (W)
j :=

〈�Z−j ∣∣∣�Q(�Z, �Z)
〉
,

respectively.
In Fig. 3, the transfer functions for the HMHD case

are shown. The transfer function spectra of the ion cy-
clotron (resp. whistler) mode have close functional form
to those of the kinetic (resp. magnetic) energy for interme-
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Fig. 3 Time series of the normalized and shell-averaged energy
transfer spectra of the u, b variables (top) and the GEV
(bottom) for the HMHD case (α = 0.05). Top: kinetic
(left) and magnetic (right) energy transfer spectra. Bot-
tom: ion cyclotron mode (left) and whistler mode (right)
energy transfer spectra.

Fig. 4 Time series of the shell-averaged energy transfer spectra
for the MHD case (α = 0). The quantity shown in each
panel and the changes in line colors are the same as in
Fig. 3.

diate and higher wavenumber ranges (k � 0.1kη) and those
of the magnetic (resp. kinetic) energy for lower wavenum-
ber ranges (k � 0.1kη). This “switching” tendency cor-
responds to those found for the energy spectra. However,
the tendency of the energy transfer function profiles for the
standard MHD case (α = 0) seems to reflect that of the
energy spectra, i.e., the pair of kinetic and whistler mode
energy transfers and that of the magnetic and ion cyclotron
modes have similar profiles.

5. Discussion
In this paper, we reviewed the GEV as an orthogonal

basis of the function space of the HMHD system and its re-
lation to the conventional Elsässer variables for the MHD
system from a mathematical viewpoint. The GEV analy-

sis provided the decomposition with respect to the chiral
(or mirror) symmetry of linear wave modes. Spontaneous
breaking of the chiral symmetry of the plasma velocity and
magnetic fields was clearly captured in the difference of
the energy spectra between the ion cyclotron and whistler
modes. In particular, the disparity became significant at
higher wavenumber regions.

It is well known that the issues of spontaneous break-
ing of isotropy and mirror symmetry in fully developed tur-
bulence in plasmas are important for understanding their
dynamics (e.g., Refs. [9, 10]). In the present study, we in-
vestigated homogeneous, isotropic turbulence and focused
our attention on the breaking of mirror symmetry as a start-
ing point of the analysis, and therefore, some issues remain
for future works.

In terms of the statistical anisotropy, which is mainly
due to the existence of uniform background magnetic
fields, it was clear from the derivation process of the GEV
that they retain their orthogonality, even when a uniform
background magnetic field exists.

The ideally conserved quantities are known to affect
the dynamics, even in the dissipative processes. For the
MHD system, Perez and Boldyrev numerically confirmed
that the value of cross helicity strongly affects its dynamics
[9]. It is well known that the HMHD dynamics conserve
the magnetic and hybrid (or generalized) helicities [11,12].
Recently, we demonstrated that the modified cross helicity,
which is defined by the difference between the hybrid and
magnetic helicities, is naturally derived from the GEV rep-
resentation of the HMHD system Eq. (18). Therefore, the
GEV decomposition of the HMHD system is expected to
provide a powerful tool to analyze how these helicities af-
fect the energy transfer process.
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