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One of the nonequilibrium features of turbulent plasmas is the mixing of the timescales of macroscopic and
microscopic dynamics. We here study the direct influence of heating on the turbulence and turbulent transport,
by paying attention to the coupling between source and fluctuations in the phase space dynamics. This cou-
pling causes the immediate influence of external source (like heating) on the turbulence and turbulent transport,
and thus introduces the mixing of time scales. A control parameter is introduced to denote the distance from
thermodynamical equilibrium.
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1. Introduction
Plasmas in nature and laboratories are often far from

thermal equilibrium. In employing the terminology ‘far’,
one naively assumes that the ‘distance’ from thermal equi-
librium may be definable. The distance from thermal equi-
librium, if it is quantified, is one of the essential parameters
that specify the turbulent plasmas.

In the history of study of turbulence, the parameters
such as Reynolds number or Rayleigh number have played
the central role in describing turbulent viscosity and tur-
bulent heat flux, respectively. These parameters are deter-
mined by the competition between the production via spa-
tial inhomogeneity and damping due to microscopic pro-
cesses, and have provided universal descriptions of turbu-
lence. Similar argument holds for plasmas, and an exam-
ple of distance was discussed [1], in order to describe the
non-equilibrium properties [2, 3]. In plasmas, additional
degrees of freedom in dynamics, i.e., the dynamics in ve-
locity space, must also be taken into account.

The recent result on LHD clearly has shown that, un-
der the experimental condition of periodic modulation of
heating power, the radial heat flux changes immediately
(within experimental time resolution) when the heating
power changes in time [4–8]. The change of flux is much
faster than those of the mean plasma parameters. The heat
flux cannot be expressed in terms of a unique relation of
the global plasma parameters, and a hysteresis appears
in the gradient-flux relation. The spatial inhomogeneity
alone is insufficient to specify the turbulence and turbu-
lent transport. Stimulated by these striking observations,
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a new thermodynamic force, defined in the parameters of
velocity space, was introduced, and its relation to the inho-
mogeneities in real space was also discussed [9]. This new
idea has given an explanation of transport hysteresis [4–8]
as was discussed in [10, 11].

The nonequilibrium feature of matter, which is far
from thermal equilibrium, is also described by the mixing
of the timescales of macroscopic and microscopic dynam-
ics [12]. It is usually assumed that the micro- and macro-
timescales are discriminated. The cross-scale dynamics
in multi-scale turbulence leads the mixing of timescales
[9, 10]. Here we discuss the timescale mixing, which is
introduced by the new thermodynamic force in the plasma
turbulence. The control parameters are discussed, and are
compared to the standard parameter that denotes the devi-
ation of Maxwell distribution. Putting an emphasis on this
timescale mixing, we discuss the distance from thermody-
namic equilibrium.

2. Model
The kinetic equation in the presence of the source in

the phase space is written as
(
∂

∂t
+ u · ∇+ es

ms
(E + u × B) · ∇v

)
f (x, u : t) = S+C ,

(1)

where x and u denote the spatial and velocity coordinates,
S is the source in the phase space, C is the collision op-
erator, and suffix s is the particle species. The functional
form of source term S , S [ f ; u, x, t], is treated as prescribed
in this analysis. The distribution function is separated into
mean and perturbation, as f = f0 + f̃ , where the symbol ∼
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indicates fluctuation part. Owing to the fluctuations in f ,
S [ f ; u, x, t] contains the component, which is coherent to
the fluctuation of interest. The linear contribution to it is
expanded to obtain

S [ f ; x, u, t] = S̃ [ f0; x, u, t] +
δS [ f0; x, u, t]
δ f0

f̃ + · · · .
(2)

Thus the kinetic equation is separated into the fluctuating
part and the mean component, for electrostatic perturba-
tions, (

∂

∂t
+ u · ∇ + es

ms
(E + u × B) · ∇v

)
f̃

= − es

ms
Ẽ · ∇v f0 + δS [ f0; u, x, t]

δ f0
f̃ + C̃ , (3a)

where the collisional change rate C is also separated into
the mean and fluctuation part C = C̄ + C̃. The first term in
RHS of Eq. (3a) indicates the driving by the spatial inho-
mogeneity of mean parameters, and the second term shows
a new mechanism [9]. The second term in the RHS repre-
sents the change rate of distribution function by heating
process, and it directly affects the fluctuations without the
change in f0. This term jumps at the on/off of heating pro-
cess, so that the effect of on/off of heating can immediately
influence the fluctuations, before the slower change of the
mean f0 takes place. Note that the second term in the RHS
of Eq. (3a) is a symbolic representation. As was discussed
in ref. [10], the functional derivative of S with respect to
the distribution is an operator, not a scalar coefficient. It is
noted that the second term in the RHS is the lowest order
term, which can change at the onset of heating without de-
lay. In other terms in the RHS of Eq. (3a), the coefficients
to the fluctuating fields cannot change without variation of
mean plasma parameters, i.e., the immediate effect of heat-
ing at the onset is not included explicitly.

The equation for mean distribution,(
∂

∂t
+ u · ∇ + es

ms
(E + u × B) · ∇v

)
f0

= − es

ms

〈
Ẽ · ∇v f̃

〉
+ S +C , (3b)

includes the influence of turbulent transport and the source
(the first and second terms in the RHS, respectively). The
separation of Eq. (3b) from Eq. (3a) is based on the sym-
metry consideration: In this article, quantities in Eq. (3b)
are treated constant on a magnetic surface, while those in
Eq. (3a) are varying on a magnetic surface. Some aspects
of cross-scale nonlinear interactions [2, 3] are noted at the
end of this article.

In the following, impacts on the turbulence and on
mean distribution in f0 are explained from the view point
that the turbulence can be influenced directly by the onset
of heating. This point is the main difference of the consid-
eration here from conventional arguments, where either the
heating changes the mean distribution function via Eq. (3b)

(which then modifies turbulence) or the change of turbu-
lence and transport results from the change of mean plasma
parameters. This article illustrates the non-equilibrium pa-
rameter that denotes the distance associated with timescale
mixing, which is induced by the new coupling term in
Eq. (3a).

3. Mixing of Timescales and Non-
Equiribrium Distance
In the conventional arguments, the second term in the

RHS of Eq. (3a) is neglected, and the time scale separation
is applied to the system of Eq. (3). The characteristic time
scales for changes for the global parameters (temperature,
etc.), mean distribution function and fluctuations, τglobal,
τf0, τcor, respectively, are separated, τglobal � τf0 � τcor.
With this assumption, by neglecting the first term in the
RHS of Eq. (3a), the evolution of symmetric part of the
mean distribution function (in the time scale of τf0) is de-
scribed by

∂

∂t
f0 =

1
u2
∂

∂v

[
−αv2 f0+

1
2
∂

∂v
(βv2 f0)+

〈P〉
4mn
v2
∂

∂v
f0

]
,

(4a)

where α and β are the drag and diffusion in the velocity
space owing to the collisional process, respectively, 〈P〉 in-
dicates the mean absorption power by rf heating, and n and
m are number density and particle mass, respectively [13].
(The suffix to specify the particle species is dropped.) The
Stix’s ξ-parameter was introduced as

ξ =
〈P〉
3nT
τs , (4b)

where τs is the slowing-down time. This parameter is a
measure to specify the deformation of the mean distribu-
tion function from the Maxwell distribution. In this sense,
the ξ-parameter is one measure of non-equilibrium state.
Then the transport equation of global parameters is con-
structed, in which the turbulent transport coefficient is in-
troduced based on the closure model.

In the new approach, in which the second term in
the RHS of Eq. (3a) is kept, the new control parameter
emerges. This second term is symbolically denoted as

δS [ f0; u, x, t]
δ f0

f̃ = γheat(P) f̃ . (5)

This crude estimate of the impact of operator by a scalar
coefficient is introduced for an analytic insight of the prob-
lem. An analysis was developed by taking an example of
trapped particle mode [9]. Combining Eqs.(3a) and (5), the
perturbed electron density was calculated as

ñe

n
=

⎛⎜⎜⎜⎜⎜⎝1 −
√

2r
R

⎞⎟⎟⎟⎟⎟⎠ eφ̃
Te

+

√
2r
R

∫
dv3

(
ω − ωT

e

)
f0

ω − ωD + iνeff − iγheat

eφ̃
Te
, (6)
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where the first term in the RHS is the contribution of the
transit particles and the second term is that of trapped par-
ticles, with

ωT
∗e(E) = ω∗ + ω∗ηe

(
v2/2v2th − 3/2

)
,

ηe = (d ln Te/dx) (d ln n0/dx)−1 .

As a result that the direct effect of heating appears in the
denominator in Eq. (6), the growth rate of trapped particle
mode is modified as [10]

γTPM =
r

4R
ω2∗

νeff,e − γheat,e
− νeff,i + γheat,i . (7)

The particle flux by the fluctuating velocity Ṽr, 〈ñeṼr〉, is
calculated as

〈ñeṼr〉 = −nTekθ
eB

∣∣∣∣∣∣
eφ̃
Te

∣∣∣∣∣∣
2 √

2r
R

Im

×
∫

dv3
(
ω − ωT∗e

)
f0

ω − ωD + iνeff − iγheat
. (8)

This result shows that the influence of the heating directly
appears in the denominator of response function, so that
the transport flux changes immediately when the heating
power changes in time, without waiting the elapse time of
the transport. The magnitude of the direct impact of the
heating on the transport process is measured by the ratio
between γheat and the decorrelation rate of the fluctuation,
γheatτcor, or

Γheat =
γheat

χNk2 , (9)

where χN is the turbulent transport coefficient. This is
because the higher order nonlinear effects determine the
width of the resonance of the propagator in Eq. (6) or (8),
if renormalized. The control parameter Γheat in Eq. (9) is
compared to the ξ-parameter in Eq. (4b). The new control
parameter in Eq. (9) is explicitly rewritten as

Γheat =
δS [ f0; u, x, t]
δ f0

1
χNk2⊥

. (10)

The coefficient δS/δ f has the similar parameter depen-
dence as 〈P〉/nT in Eq. (4b). While such a similarity be-
tween ξ and Γheat exists, the main difference is that the pa-
rameter Γheat denotes the direct impact of heating (sources)
on turbulence, so that the turbulent transport can vary im-
mediately after the source changes in time.

The term (9) indicates that the direct influence of heat-
ing on turbulence is more effective for perturbations with
longer correlation time. Based on this consideration, the
response of long-range fluctuations (which are linearly sta-
ble and driven by nonlinear processes) was studied in [10].
By use of the fluid model and introducing the response co-
efficient γh by the relation,

γh p̃ ≡ δP
δp

p̃ , (11)

where P and p are the heating power density and pres-
sure, respectively, one obtaines the direct influence of the
plasma heating on the nonlinearly-excited long-range fluc-
tuations as [10]

I =
1

1 − Γh
I0 , (12)

where I is the normalized density of fluctuation energy of
interest, and the control parameter

Γh =
γh

χNk2⊥
=
δP
δp

1
χNk2⊥

, (13)

is the counter part of the parameter (9) in the fluid mod-
elling, and I0 is the mean intensity in the absence of the
heating effect. Note that the normalizing time (χNk

2

⊥)−1

depends on the correlation length of the fluctuation of the
interest. This dependence causes the additional timescale
mixing through cross-scale nonlinear interactions. The
control parameter and Γheat is proportional to the heating
power (if other parameters are common). It is shown that,
before the changes of pressure and its gradient, the turbu-
lent intensity increases after the onset of heating if near
γh > 0. The similarity and difference between Γh and
ξ is analogous to the case of Γheat. Thus, the parameter
Eq. (13), together with (10), plays a role of measure that
specifies the distance from thermodynamic equilibrium.

The relation (12) shows that the impact on fluctuation
intensity becomes stronger as the heating power increases.
The relation (12) was obtained in the limit of small Γh. The
enhancement of fluctuation is shown to be prominent if
γh ∼ χNk2⊥. Experimental observation has also shown that
the increment of fluctuation intensity and jump in the hys-
teresis increase more rapidly than the increment of heating
power [4]. Equation (12) is in qualitative agreement with
experimental observation. However, Eq. (12) shows a sin-
gularity at γh ∼ χNk2⊥, although the singularity does not
appear in experimental observations.

This singularity is resolved by considering the nonlin-
ear damping of the excited mode. Following the Kadomt-
sev’s argument in [14], the evolution of the fluctuation in-
tensity follows the equation

∂

∂t
I = −

(
γdamp − γh

)
I − ω2I2 + ε , (14)

where γdamp = χNk2⊥ is the damping rate of the fluctuation
(in the absence of heating effect), the termω2I2 denotes the
damping rate by self-nonlinear effect, and ε is the sponta-
neous excitation as was deduced in [10]. The mean en-
ergy density and the spontaneous emission term is related
as ε = γdampI0, which gives the stationary solution Eq. (12)
in the limit of small fluctuation amplitude. Equation (14)
gives the stationary solution

I =
Γh − 1 +

√
(Γh − 1)2 + 4I0ω2χ

−1
N k−2⊥

2ω2χ
−1
N k−2⊥

. (15)
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In the limit of small Γh, Eq. (12) is recovered. In the limit
of stronger heating, Γh � 1, one has

I ∼ γh/ω2 . (16)

The result of Eq. (15) resolves the singularity in Eq. (12).
The transition from Eq. (12) to Eq. (16) takes place near
Γh ∼ 1.

4. Summary
We here study the direct influence of heating on the

turbulence and turbulent transport, by paying the attention
to the coupling term between source and fluctuations in
the phase space dynamics. The mixing of the timescale
happens. The conventional ordering of time scale separa-
tion, τglobal � τf0 � τcor, is violated, where τglobal, τf0,
τcor, are the characteristic time scales for the changes of
global parameters, mean distribution function and fluctu-
ations, respectively. This timescale mixing is one of the
characteristic features of the far-nonequilibrium plasmas.
The measure of the ‘distance’ is introduced as Eq. (10) or
Eq. (13), which is compared to the Stix’s ξ parameter that
characterizes the deviation from Maxwellian distribution.

This article discusses the coupling term between
source and fluctuations in the phase space dynamics. This
coupling seems to be important in understanding experi-
mental observations [4]. The long-range nonlinear cou-
pling between microscopic fluctuations at two radial loca-
tions, the spatial distance between which are much longer
than the auto-correlation length of microfluctuations, has
been identified experimentally [15]. However, the imme-
diate influence of the heating power on the turbulent trans-
port (as illustrated by the hysteresis) in [4] seems to be un-
explainable in the framework of the real-space coupling.
A global turbulence simulation has been performed: Non-
diffusive responses were simulated, but the observed hys-
teresis was not reproduced in the simulation [16]. More
emphasis on study of the phase space dynamics is neces-
sary for the understanding of turbulent plasmas.

In search of understanding of observations [4–8] along
the line of thought in this article, extensions of the model
are necessary. The first issue is the importance of the cross-
scale nonlinear interactions in turbulence. As is shown by
Eq. (9), the direct influence of heating (that is modelled
in this article) can appear more easily for meso-scale or

long-range fluctuations, which are known to modify mi-
croscopic turbulence via cross-scale nonlinear interactions
[2,3]. Thus, the extension of the present consideration into
the framework of multiple-scale turbulence is necessary.
The second issue is the evaluation of the parameter γheat. In
principle, the parameter γheat, which denotes the direct in-
fluence of heating on turbulent transport, can be negative.
In such a case, the heating reduces the turbulence trans-
port. One possibility for the case of negative γheat is the
Ohmic heating. This is possible to understand, because the
increase of plasma temperature reduces the Ohmic heat-
ing. The other possibility is that the operator δS/δ f has a
negative eigenvalue, although a concrete example has not
yet been demonstrated. The evaluation of γheat is a future
important task to examine the relevance of the model.
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