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Three-Fluid Axisymmetric Equilibrium Model and Application to
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Radiofrequency (RF) waves could be used for plasma current start-up in spherical torus (ST) reactors, where
plasma formation and current drive without the ohmic heating solenoid is required. In such a plasma, the elec-
trons can be represented by two temperature components, i.e. high-temperature low-density electrons and low-
temperature high-density electrons. In order to describe the equilibrium of such plasmas, we develop a three-fluid
(two electron fluids and one ion fluid) axisymmetric equilibrium model with toroidal and poloidal flows. This
model has been applied for the first time to a recent TST-2 discharge, and we have obtained an equilibrium which
is consistent with experimentally observed results. It is found that (1) the toroidal current density and pressure
are dominated by the high-temperature low-density electron (eh-electron) fluid and (2) the radial force balance
for each fluid species is quite different, i.e. the ion fluid is confined by the electric force due to the negative elec-
trostatic potential while the eh-electron fluid pressure gradient force is balanced by the Lorentz force (its toroidal
current density times the poloidal magnetic field). These results are different from previous speculations.
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1. Introduction
The multi-fluid formulation of axisymmetric flowing

equilibria contains important physics which is missing
from the one-fluid model [1–4]. The poloidal flow speed
singularity of the two-fluid equilibrium equations differs
markedly from the one-fluid model [5]. The poloidal flows
exceeding the neoclassical theory prediction have been ob-
served in several tokamaks [2]. Since the neoclassical the-
ory neglects the two-fluid effect to determine poloidal mag-
netic field structure, it is interesting to apply the two-fluid
model to solve this discrepancy. In a high-performance
discharge in NSTX, it was found that the ratio of the lo-
cal ion inertial length to the local scale length of the ion
pressure gradient, �i/Lpi, can be large except in the core
region, while the ratio of the local ion gyroradius to the
local scale length of the ion pressure gradient, ρi/Lpi re-
mains small in the entire domain [3, 4]. This suggests that
the two-fluid model should be used to describe such equi-
librium with steep gradient because the ion inertial length,
�i ≡ c/ωpi, (c is the speed of light and ωpi is the ion plasma
frequency) is the intrinsic scale of the two-fluid model and
the one-fluid model is valid only if �i/Lpi � 1 [6].

The formation of a high performance plasma without
the ohmic heating solenoid was accomplished by combin-
ing time varying vertical and shaping fields with several
heating and current drive tools [7]. Such a technique is
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crucial especially for spherical torus (ST) plasmas in or-
der to realize a commercial fusion reactor. Recently a
full two-fluid equilibrium model [3, 4] was applied to de-
scribe a solenoid-free RF sustained ST plasma [8]. In the
past equilibrium reconstruction of such a plasma has been
carried out using the Grad-Shafranov formalism [9, 10].
Since some electrons are driven resonantly by the RF
wave, the electrons should have two temperature compo-
nents, i.e. high-temperature low-density electrons and low-
temperature high-density electrons [11]. Recent measure-
ment of the electron temperature and density in the TST-2
experiment reveals the existence of high-temperature low-
density electrons which carry almost all of plasma cur-
rent. In order to describe the equilibrium state of RF sus-
tained ST plasmas accurately, we develop here a new ax-
isymmetric three-fluid equilibrium model consisting of a
high-temperature low-density electron component, a low-
temperature high-density electron component and an ion
component.

Section 2 presents the formulation of the model which
includes a nonlinear algebraic equation for the density ra-
tio as well as four 2nd order partial differential equations
and some algebraic equations. Since this model has nine
arbitrary surface functions, how to select these functions is
important in practice. In Sec. 3 we apply the model to a
recent TST-2 discharge #115620 at 80 ms. Discussion and
summary are presented in Sec. 4.

c© 2015 The Japan Society of Plasma
Science and Nuclear Fusion Research
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2. Equilibrium Formulation
We adopt the MHD ordering or the fast order-

ing and neglect the gyroviscous cancellation (e.g. [12]).
The plasma considered here consists of low-temperature
high-density electrons (denoted by subscript el), high-
temperature low-density electrons (denoted by subscript
eh) and low-temperature high-density ions (denoted by
subscript i). This model assumes that 1) all three compo-
nents have isotropic temperatures, 2) the ion fluid is singly-
ionized, 3) inertia terms are kept for the electron-fluids
and 4) equilibrium is axisymmetric. This model is used
to represent collisionless ST plasmas sustained by strong
RF electron heating.

The model is based on the continuity and force bal-
ance equations for the el-electron fluid, the eh-electron
fluid and the ion fluid, Ampere’s law and Gauss’s law for
the magnetic field.

∇ · (nαuα) = 0 for α = el, eh, i (1)

mαnα(uα · ∇)uα = −∇pα + qαnα (−∇VE + uα × B)

for α = el, eh, i (2)

∇ × B = μ0e(niui − neluel − nehueh) (3)

∇ · B = 0 (4)

Here VE is the electrostatic potential, mel = meh = me is the
electron mass, and standard notations are used for other
quantities. We assume the charge-neutrality condition is
satisfied such that

ni = nel + neh (5)

where qel = qeh = −e and qi = e are used.
Using the relations, uα ·∇uα = ∇

(
u2
α/2

)
−uα×(∇×uα)

and pα = nαTα in Eq. (2), the force balance equation can
be written as

∇
(
Tα + mαu2

α/2 + qαVE

)
+ Tα∇ ln nα = qαuα ×Ωα

for α = el, eh, i (6)

where Ωα ≡ B + (mα/qα)∇ × uα (7)

Note that qαΩα is the curl of the generalized momentum
for the α-species. We call Ωα the modified magnetic field
hereafter. Also note that Eq. (6) is more useful than Eq. (2).
In an axisymmetric system, the left side of Eq. (6) has no
toroidal component, so no toroidal component should exist
on the right side (i.e. uα ×Ωα|φ = 0). Therefore we need
to consider only two non-toroidal components in Eq. (6).
On the other hand, the left and right sides of Eq. (2) have
toroidal components mα(∇ × uα) × uα|φ and qαuα × B|φ,
respectively even in the axisymmetric system. These two
terms are canceled in Eq. (6) by using Ωα. Hence we may
say that in order to describe the axisymmetric flowing equi-
librium, the form of Eq. (6) is more convenient to describe
force balance.

2.1 Dimensionless form
As dimensionless forms are convenient in numerical

computation, we adopt dimensionless variables. The pri-

mary scales are (1) Lref a reference length of a plasma, (2)
Iref a reference plasma current, and (3) nref a reference den-
sity. These lead to derived scales for the magnetic field
Bref ≡ μ0Iref/Lref , velocities uref ≡ Bref/(μ0minref)1/2, tem-
peratures Tref ≡ miu2

ref , pressures pref ≡ nrefTref , scalar
potential VEref ≡ Tref/e, vector potential Aref ≡ Bref Lref ,
poloidal magnetic flux ψref ≡ Bref L2

ref , current density
jref ≡ Bref/(μ0Lref), poloidal flow surface function Φref ≡
nrefuref L2

ref and electric field Eref ≡ uref Bref . Here mi is the
ion mass.

The dimensionless forms of Eqs. (1), (6), (7), (3) and
(4) are written as

∇ · (nαuα) = 0 for α = el, eh, i (8)

∇
(
Tα + (mα/mi)

1
2

u2
α + (qα/e)VE

)
+ Tα∇ ln nα

= (qα/e)ε−1uα ×Ωα for α = el, eh, i (9)

Ωα = B + (mα/mi)(e/qα)ε∇ × uα for α = el, eh, i

(10)

∇ × B = ε−1(niui − neluel − nehueh) (11)

∇ · B = 0 (12)

Here ε ≡ �iR/Lref and �iR ≡ c√
e2nref/ε0mi

(13)

�iR is the ion inertial length for the reference density nref .

2.2 Surface functions
Hereafter we adopt the right-hand cylindrical coordi-

nates (R, φ,Z). Since the magnetic field, B, the mass flow,
nαuα, and the modified magnetic field,Ωα, are divergence-
free, they can be expressed by the poloidal magnetic flux
function ψ(R,Z), the stream function for poloidal flow
Φα(R,Z) and the function Yα(R,Z), respectively.

B = ∇ψ × ∇φ + RBφ∇φ (14)

nαuα = ∇Φα × ∇φ + nαRuαφ∇φ for α = el, eh, i

(15)

Ωα = ∇Yα × ∇φ + RΩαφ∇φ for α = el, eh, i (16)

Yα = ψ + (mα/mi)(e/qα)εRuαφ for α = el, eh, i

(17)

Ωαφ = Bφ − (mα/mi)(e/qα)εR∇ ·
(∇Φα

nαR2

)

for α = el, eh, i (18)

Since B · ∇ψ(R,Z) = 0, nαuα · ∇Φα(R,Z) = 0, and
Ωα · ∇Yα(R,Z) = 0, ψ(R,Z), Φα(R,Z) and Yα(R,Z) are sur-
face functions for the magnetic field B, the mass flow nαuα
and the modified magnetic field Ωα, respectively. Equa-
tions (17) and (18) are derived from Eq. (10). Note that
the deviation (Yα − ψ) is caused by species toroidal flow
velocity while the deviation of (Ωαφ − Bφ) is caused by
species poloidal flow velocity. Note also that since the
z-component of the generalized angular momentum in di-
mensional form is given by Mαz ≡ R(mαuαφ+qαAφ), which
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is conserved in a time-dependent axisymmetric system, Yα
defined by Eq. (17) is a dimensionless form of Mαz/qα.

2.3 Force balance in directions of φ̂, Ωα and
∇Yα

For the axisymmetric equilibrium considered here,
there is no toroidal component in the left side of Eq. (9),
so that φ̂ · (uα × Ωα) = 0 yielding φ̂ · (∇Φα × ∇Yα) = 0
where φ̂ is the unit vector in the toroidal direction. This
condition is satisfied if

Φα = Φα(Yα(R,Z)) for α = el, eh, i (19)

i.e. Φα is an arbitrary function depending only on Yα(R,Z).
Note that since the inertial term in Eq. (2) has the toroidal
component, one cannot use the above mentioned property
of the axisymmetric system as long as Eq. (2) is used in-
stead of Eq. (6). Concerning the temperature, we adopt
a model that the temperature is an arbitrary function of
Yα(R,Z), i.e.

Tα = Tα(Yα(R,Z)) for α = el, eh, i (20)

This model is valid as long as the species thermal speed
is much larger that the species poloidal flow velocity. For
more detail, see Appendix A of Ref. [3].

The force balance Eq. (9) in the direction of the mod-
ified magnetic field Ωα can be satisfied when the function
Fα defined below is a function depending only on Yα(R,Z).

Fα ≡ Tα(Yα)(1 + ln nα) + (mα/mi)
1
2

u2
α

+ (qα/e)(VE −C) = Fα(Yα) for α = el, eh, i (21)

where C is an integration constant. Using the above in
Eq. (9), the ∇Yα component of Eq. (9) can be written as

εR
(
F′α(Yα) − T ′α(Yα) ln nα

)
= (qe/e)

(
uαφ − n−1

α Φ
′
α(Yα)Ωαφ

)
for α = el, eh, i

(22)

where the prime denotes differentiation with respect to the
argument Yα.

2.4 Ampere’s law
Using the expression (14), the left side of Eq. (11) be-

comes

∇ × B = ∇(RBφ) × ∇φ − φ̂
{
∂

∂R

(
1
R
∂ψ

∂R

)
+

1
R
∂2ψ

∂Z2

}

(23)

The toroidal (φ) component of Ampere’s law is written as

∂

∂R

(
1
R
∂ψ

∂R

)
+

1
R
∂2ψ

∂Z2
= − jφ where

jφ = ε
−1(niuiφ − neluelφ − nehuehφ) (24)

Using Eqs. (15) and (23) in Eq. (11), the poloidal compo-
nent of Ampere’s law is written as

∇(RBφ) × ∇φ
= ε−1 (∇Φi(Yi) − ∇Φel(Yel) − ∇Φeh(Yeh)) × ∇φ

From the above we have

RBφ = ε
−1 (Φi(Yi) −Φel(Yel) −Φeh(Yeh)) (25)

Defining new functions for the poloidal flows as

Φα(Yα) = −εKα(Yα) for α = el, eh, i (26)

the toroidal component of the magnetic field can be written
as,

Bφ = (Kel(Yel) + Keh(Yeh) − Ki(Yi)) /R (27)

Using Eq. (26) in Eg. (22), the species toroidal flow
and toroidal current density are written as

uiφ = εR
(
F′i (Yi) − T ′i (Yi) ln ni

)
− εn−1

i K′i (Yi)Ωiφ

(28a)

uelφ = −εR
(
F′el(Yel) − T ′el(Yel) ln nel

)
− εn−1

el K′el(Yel)Ωelφ (28b)

uehφ = −εR
(
F′eh(Yeh) − T ′eh(Yeh) ln neh

)
− εn−1

eh K′eh(Yeh)Ωehφ (28c)

jφ = jiφ + jelφ + jehφ (29)

where jiφ = ε
−1niuiφ, jelφ = −ε−1neluelφ,

jehφ = −ε−1nehuehφ (30)

jiφ = niR
(
F′i (Yi) − T ′i (Yi) ln ni

)
− K′i (Yi)Ωiφ (31a)

jelφ = nelR
(
F′el(Yel) − T ′el(Yel) ln nel

)
+ K′el(Yel)Ωelφ (31b)

jehφ = nehR
(
F′eh(Yeh) − T ′eh(Yeh) ln neh

)
+ K′eh(Yeh)Ωehφ (31c)

Ωαφ = Bφ + (mα/mi)(e/qα)ε2R∇ ·
(

K′α(Yα)∇Yα
nαR2

)

for α = el, eh, i (32)

2.5 Electrostatic potential and densities
Applying Eq. (21) to the three species, the electro-

static potential VE is written as

VE = F̃i − Ti(Yi)(1 + ln ni) +C

= Tel(Yel)(1 + ln nel) − F̃el +C

= Teh(Yeh)(1 + ln neh) − F̃eh +C (33)

where the constant C can be used to adjust VE to the exper-
imentally observed electrostatic potential at a given point
and

F̃el ≡ Fel(Yel) − 1
2

(me/mi)u
2
el
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F̃eh ≡ Feh(Yeh) − 1
2

(me/mi)u
2
eh

F̃i ≡ Fi(Yi) − 1
2

u2
i

u2
α = u2

αφ + u2
αp

(uαp)2 =

(
εK′α(Yα)

nαR

)2
⎧⎪⎪⎨⎪⎪⎩
(
∂Yα
∂R

)2

+

(
∂Yα
∂Z

)2
⎫⎪⎪⎬⎪⎪⎭

for α = el, eh, i (34)

Eliminating the quantity (VE−C) from the first and second
lines in Eq. (33) yields

ln ni +
Tel

Tel + Ti
ln

(
1 − neh

ni

)
=

F̃el + F̃i

Tel + Ti
− 1

In the second term on the left-hand side, nel =

ni (1 − neh/ni) is used. Next, eliminating the quantity
(VE −C) from the first and third lines in Eq. (33) yields

ln ni +
Teh

Teh + Ti
ln

neh

ni
=

F̃eh + F̃i

Teh + Ti
− 1

Finally eliminating the term ln ni from the above two equa-
tions, we have the following nonlinear equation for the
density ratio neh/ni,

neh

ni
= Exp

{
F̃eh

Teh
− F̃el + F̃i

Tel + Ti
+

F̃iTel − F̃elTi

Teh(Tel + Ti)

+
(Teh + Ti)Tel

Teh(Tel + Ti)
ln

(
1 − neh

ni

)}
(35)

The ion density is given by

ni = Exp

{
F̃el + F̃i

Tel + Ti
− 1 − Tel

Tel + Ti
ln

(
1 − neh

ni

)}

(36)

Then, neh = ni × (neh/ni) and nel = ni − neh. (37)

Equations (17), (20), (21), (24), (27) - (32) and
(35) - (37) constitute a system of equations for axisym-
metric equilibrium of a two-electron-temperature plasma.
This system includes four second-order partial differential
equations and has nine arbitrary functions Tα(Yα(R,Z)),
Fα(Yα(R,Z)) and Kα(Yα(R,Z)) for α = el, eh, i. Since these
functions determine equilibrium profiles, we call these the
profile functions. Next section shows an application of this
model which we call the three-fluid model hereafter.

3. Application to Spherical Torus
Plasmas Sustained by Strong RF
Electron Heating

Since the temperature and toroidal flow velocity of
the ions, and the temperature and density of the back-
ground electrons are measured recently in TST-2 discharge
#115620 where the plasma current is sustained by the
LHW (200 MHz) combined with the ECW (2.45 GHz)
[13–15]. We apply the present model to reconstruct equi-

Table 1 Parameters of TST-2 shot #115620 at 80 ms.

librium of this discharge at 80 ms. Table 1 shows the pa-
rameters of this shot.

In this computation we choose Lref = 1 [m], Iref =

10 [kA] and nref = 1018 [m−3] as primary reference scales.
Other reference scales are ε = 0.2278, Bref = 0.0126 [T],
ψref = 0.0126 [Wb/2π], Tref = 0.78 [keV] and uref =

274 [km/s].

3.1 Computational method
The numerical algorithm is described in Appendix A.

The locations of the magnetic flux loops and the compu-
tational domain are shown in Fig. 1. The computational
boundary is slightly inside the vacuum vessel. To solve
the equation for the magnetic flux function (Step 1 in Ap-
pendix A), we use the experimentally observed magnetic
flux data on this boundary. Effects of the eddy currents
flowing in various structures are excluded from the flux
data [16], so the current which is allowed to flow inside the
boundary is only the plasma current [8].

Since the slanted parts of the computational bound-
ary (Fig. 1) are chosen to lie on grid points, we adopt the
following new coordinates to make the boundary as close
as possible to the locations of magnetic flux loops for a
given number of grid points. The new coordinates (X, Y)
are defined as X =

√
R and Y = tan(1.65Z). To solve

the second-order partial differential equations, we use the
second-order finite-difference method with equal grid in-
tervals in the (X, Y) coordinates. Maximum numbers of
division in the X and Y directions are 128 and 160, respec-
tively. To accelerate numerical computation, a successive
over relaxation (SOR) and a progressive multi-grid scheme
with four grids are combined. How to select the nine pro-
file functions is crucial in practice. Appendix B shows pro-
file functions used in this computation.

3.2 Results of reconstructed TST-2 equilib-
rium

Effects of flow appear in two ways. The species
toroidal flow makes a difference of (Yα − ψ) [see Eq. (17)]
while the species poloidal flow makes a difference of
(Ωαφ − Bφ) [see Eq. (32)]. Figure 1 shows 2D contours of
the magnetic flux function ψ and the surface function Yeh
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Fig. 1 Flux surfaces of ψ and Yeh. The red curve represents the
LCFS, and the black dotted curves represent flux surfaces
outside the LCFS, where the surfaces for ψ and Yeh are the
same. The dotted curves inside the LCFS represent the
contours of ψ (black) and Yeh (red) for the values −0.013
and −0.024 in dimensionless unit. The black circle in-
dicates the position of the magnetic axis and the black
asterisk indicates the peak position of the toroidal current
density.

of the eh-electron fluid. The red curve represents the last
closed flux surface (LCFS) which lies just inside the lim-
iter. To obtain this equilibrium we choose Yicriti = Yelcriti =

Yehcriti = −0.0053 in dimensionless unit (see Appendix B).
If these critical values are chosen higher than −0.0053, the
LCFS shrinks compared to the red curve while the toroidal
current density does not vanish at the outboard limiter. In
this equilibrium there is no plasma current density outside
the LCFS. This property is different from the previous
speculation where appreciable current can flow outside the
LCFS (e.g. Ref. [7]) (For more comparison, see Fig. 10).
The black dotted curves represent flux surfaces outside the
LCFS where the surfaces for ψ and Yeh are the same be-
cause there is no toroidal flow there. The dotted curves
inside the LCFS represent the contours of ψ (black) and
Yeh (red) for the values of −0.013 and −0.024 in dimen-
sionless unit. The black circle indicates the position of
the magnetic axis (R = 0.421 [m]) and the black asterisk
indicates the peak position of the toroidal current density
(R = 0.524 [m]). As the ion and the el-electron toroidal
flows are small, differences of (Yi−ψ) and (Yel−ψ) are very
small. Figure 2 shows the density profile for each species
on the midplane. The dot-dashed curve, the solid curve
and the dotted curve represent the ion fluid density ni, the

Fig. 2 Midplane density profiles for each species. The dot-
dashed curve, the solid curve and the dotted curve repre-
sent the ion fluid density ni, low energy electron density
nel and high energy electron density neh, respectively.

Fig. 3 Midplane temperature profiles of Tel [eV] (dot-dashed
curve), Ti [eV] (black solid curve), and Teh [keV] (red
curve). The dotted curve represents VE [V].

low energy electron density nel and the high energy elec-
tron density neh, respectively. Figure 3 shows the midplane
temperature profiles of Tel [eV] (dot-dashed curve), Ti [eV]
(black solid curve) and Teh [keV] (red curve). The dot-
ted curve represents the electrostatic potential VE [V]. The
midplane profile of the ion toroidal flow velocity uiφ [km/s]
is shown in Fig. 4. Parameters of this reconstructed three-
fluid equilibrium are summarized in Table 2. Although the
ion toroidal flow velocity is slightly higher than the ob-
served value, other parameters are in good agreement with
the observed values shown in Table 1.

Figures 5-9 show interesting features of the recon-
structed equilibrium. From Eq. (2) the radial force balance
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Table 2 Parameters of the reconstructed three-fluid equilibrium.

Fig. 4 Midplane ion toroidal flow velocity profile uiΦ [km/s].

equation is written as,

−∂pα/∂R − qαnα∂VE/∂R + jαφBZ + (− jαZ Bφ)

+mαnα
(
u2
αφ/R−uαR∂uαR/∂R−uαZ∂uαR/∂Z

)
= 0

for α = el, eh, i

The 1st, 2nd, 3rd and 4th terms of the above equation
represent the pressure gradient force, the electric force,
and the Lorentz forces, respectively. The last term comes
from the inertial term. In the present case, the last two
terms are negligible compared with the centrifugal force,
mαnαu2

αφ/R. Figure 5 shows the radial force balance on
the midplane. The pressure gradient force− ∂pα/∂R (solid
curve), the electric force (dotted curve), the Lorentz forces
jαφBZ (dashed curve), − jαZ Bφ (dot-dashed curve), and the
centrifugal force (2-dot-dashed curve) are shown. In the
ion fluid force balance, the pressure gradient force and the
electric force dominate (Fig. 5(a)). As a result, the ion
fluid is confined by the electric force. The other three
forces acting on the ion fluid are too small to see. For
the eh-electron fluid, the pressure gradient force and the
Lorentz forces jehφBZ are balanced (Fig. 5(c)). The other
three forces acting on the eh-electron fluid are too small
to see. For the el-electron fluid, the sum of the pressure
gradient force and the electric force keep balance with the

Fig. 5 Radial forces for the ion fluid (a), the low energy elec-
tron fluid (b) and the high energy electron fluid (c). The
pressure gradient force −∂pα/∂R (solid curve), the elec-
tric force (dotted curve), the Lorentz force jαΦBZ (dashed
curve), − jαZ BΦ (dot-dashed curve), the centrifugal force
(2-dot-dashed) are shown.

Lorentz force jelφBZ (Fig. 5(b)). The other two forces act-
ing on the el-electron fluid are too small to see. Note that
the scales of the vertical axis in (a), (b) and (c) are quite
different. The force balance mentioned above is complex
and its features could not be described by the standard one-
fluid MHD. Figure 6 shows the species toroidal current
density profile on the midplane. The solid, the dot-dashed,
the dashed and the dotted curves represent jφ, jehφ, 10× jelφ,
and 100× jiφ, respectively. Nearly the entire current is car-
ried by the eh-electron (high energy low density electron)
fluid. Figure 7 shows the species pressure profile on the
midplane. The solid, the dot-dashed, the dashed and the
dotted curves represent the total pressure p = peh+ pel+ pi,
peh, 10× pel and 10× pi, respectively. The pressure is dom-
inated by that of the eh-electron fluid. Figure 8 shows the
ratios of the toroidal flow velocity to the thermal veloc-
ity for each species fluid. The solid, the dashed and the
dotted curves represent 10 × ∣∣∣uiφ/CS

∣∣∣, 10 × ∣∣∣uelφ/vth el

∣∣∣ and∣∣∣uehφ/vth eh

∣∣∣, respectively. Here CS = ((Ti + Tel)/mi)
1/2 is
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Fig. 6 Midplane toroidal current density profiles. The solid, the
dot-dashed, the dashed and the dotted curves represent
jΦ, jehΦ, 10 × jelΦ, and 100 × jiΦ, respectively.

Fig. 7 Midplane pressure profiles. The solid curve represents
the total pressure p = peh+ pel+ pi, while the dot-dashed,
the dashed and the dotted curves represent peh, 10 × pel,
and 10 × pi, respectively.

the sound speed. The ratio of the toroidal flow to the ther-
mal velocity of the eh-electron fluid is very large near the
outboard boundary. In this equilibrium, the vertical cur-
rent density jZ is about 0.1% of the toroidal current den-
sity jφ. This means that not only the toroidal current den-
sity but also the toroidal flow velocity is dominated by the
terms proportional to the radial coordinate R (Eqs. (28) and
(31)). This makes the current density profile (Fig. 6) differ-
ent from the temperature and pressure profiles (Figs. 3 and
7). This is the reason why the peak position of the toroidal
current density shifts outward compared with the position
of the magnetic axis (Fig. 1). Asymmetry in the ratio of the
toroidal flow to the thermal velocity of each fluid can be ex-
plained by the reason mentioned above. Figure 9 shows the
midplane profiles of the magnetic flux function ψ and the

Fig. 8 Ratios of the toroidal flow velocity to the thermal veloc-
ity for each species. The solid, the dashed and the dot-
ted curves represent 10 × |uiΦ/CS|, 10 × ∣∣∣uelΦ/vth_el

∣∣∣ and∣∣∣uehΦ/vth_eh

∣∣∣, respectively. Here CS = ((Ti + Tel)/mi)1/2.

Fig. 9 Magnetic flux function ψ (solid curve) and the flux func-
tion Yeh (dotted curve) for high temperature electron fluid
on the midplane.

flux function Yeh of the eh-electron fluid. As the maximum
of uehφ is about 1/3 of the speed of light, the difference of
Yeh − ψ = −(me/mi)εRuehφ is somewhat significant. As
mentioned above, the species poloidal flow makes the dif-
ference of (Ωαφ−Bφ) [see Eq. (32)]. Since the poloidal flow
is small in this equilibrium,

∣∣∣(Ωehφ − Bφ)/Bφ
∣∣∣ < 3 × 10−5,

this difference is very small.
Figure 10 shows a comparison of the magnetic flux

contours of the present three-fluid equilibrium (black solid
curves) and those of the standard Grad-Shafranov equilib-
rium (red dotted curves). Contours outside the LCFS (see
Fig. 1) are in good agreement. Since the same boundary
magnetic flux data are used in these two equilibria, this co-
incidence is a natural result. Contours inside the LCFS are
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Fig. 10 Comparison of the magnetic flux function of the three-
fluid equilibrium (black) with that of the standard Grad-
Shafranov equilibrium (red).

model-dependent. Inside the LCFS contours of the three-
fluid equilibrium are slightly expanded in the radial direc-
tion compared with those of the standard Grad-Shafranov
equilibrium.

4. Discussion and Summary
In order to describe a solenoid-free RF sustained ST

plasma, a three-fluid equilibrium model has been devel-
oped. In this model the el-electron fluid represents a low-
temperature, high-density electron component, and the eh-
electron fluid represents a high-temperature, low-density
electron component. Equilibrium equations consist of a
nonlinear algebraic equation for density ratio, four 2nd or-
der partial differential equations (PDEs) and some auxil-
iary algebraic equations. One of PDEs is a equation for the
poloidal magnetic flux function ψ and the other three PDEs
are equations for the function Yα (α = el, eh, i). Note that
the highest order derivatives arises from the poloidal mag-
netic flux and the species poloidal mass flow.

The model was applied for the first time to recon-
struct the TST-2 RF sustained discharge #115620 at 80 ms.
The parameters of the reconstructed three-fluid equilib-
rium (Table 2) are in good agreement with the experimen-
tal data (Table 1) for this shot. The interesting features of
this equilibrium are shown in Figs. 1-9. It is found that
(1) there is no plasma current density outside the LCFS,
(2) the toroidal current density and pressure are dominated
by the eh-electron fluid, and (3) the radial force balance

is quite different among the three fluid species, i.e. the ion
fluid is confined by the electric force arising from the nega-
tive electrostatic potential while the pressure gradient force
of the eh-electron fluid is balanced by its Lorentz force
jehφBZ . These results are different from previous specu-
lations. Further investigation on this discrepancy will be
our future work.
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Appendix A. Numerical Algorithm
In this three-fluid model, there are four partial differ-

ential equations (PDEs), one is for ψ [Eq. (24)] and the
others are for Yα [Eq. (32) with Eq. (28) and Eq. (17)]. In
a general case, we must solve these four PDEs simulta-
neously with the help of algebraic equations for densities.
Since the toroidal flow velocity vanishes on the boundary,
the realistic boundary conditions for ψ and Yα should be
the same.

As shown in Sec. 3, the toroidal flow velocity uαφ is
not large implying that Yα ≈ ψ in the leading order ap-
proximation. Since the poloidal flow velocity uα poloidal is
also small in the present analysis, Ωαφ ≈ Bφ in the leading
order approximation. This means that the second term of
Eq. (32) is a small correction term of Bφ. In this circum-
stance, we can treat the second term of Eq. (32) as a pertur-
bation of Bφ. Therefore, we adopt the following iteration
procedure to obtain self-consistent solutions where all the
PDEs are solved with sufficient accuracy. In practice this
algorithm is very efficient and the boundary conditions for
the toroidal and poloidal flows are well satisfied.

(Step 0): Prepare approximate values of Q and neh/ni.
(Step 1): Update ψ for a prescribed Q

R2∇ ·
(∇ψ

R2

)
= Q where

Q ≡ −R jφ = −R( jiφ + jelφ + jehφ).

The species toroidal current density is given by Eq. (31).
(Step 2): Update Yα(R,Z) of Eq. (17), Bφ of Eq. (27), Ωαφ

of Eq. (32) and uαφ of Eq. (28), because ψ was updated.
(Step 3): Update uαφ, Yα(R,Z) and Bφ again.
(Step 4): Solve the ratio neh/ni iteratively for given other
quantities.
(Step 5): Update ni, neh, nel.
(Step 6): If convergence is not sufficient, return to Step 1
to iterate.

Appendix B. Profile Functions
Various profile functions were tested. The following

functions were found to work well.
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Fig. A1 d f /dx as a function of (1−x)1/2. The black solid and the
blue dashed curves represent peaked and hollow pro-
files, respectively.

For α = el, eh, i

Tα(Yα) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
CTα0 +CTα1 f (−(Yα − Yα crit);

CTα2,CTα3,CTα4,CTα5) if Yα − Yα crit ≤ 0
CTα0 if Yα − Yα crit > 0

Kα(Yα) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
CKα0 +CKα1 f (−(Yα − Yα crit);

CKα2,CKα3,CKα4,CKα5) if Yα − Yα crit ≤ 0
CKα0 if Yα − Yα crit > 0

Fα(Yα) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
CFα0 +CFα1 f (−(Yα − Yα crit);

CFα2,CFα3,CFα4,CFα5) if Yα − Yα crit ≤ 0
CFα0 if Yα − Yα crit > 0

where Yα crit is a constant and the generic function f and its
derivatives are given by

f (x; c2, c3, c4, c5) ≡ (x/c4)c2
[
1 − c3(x/c4)c5

]
≡ f (0, x, c2, c3, c4, c5)

d f (x; c2, c3, c4, c5)/dx

= (c2/c4)(x/c4)c2−1 [
1 − c3(1 + c5/c2)(x/c4)c5

]
≡ f (1, x, c2, c3, c4, c5)

d2 f (x; c2, c3, c4, c5)
dx2

=
c2(c2 − 1)

c2
4

(x/c4)c2−2

·
[
1 − c3

(
1 +

c5

c2

) (
1 +

c5

c2 − 1

)
(x/c4)c5

]

≡ f (2, x, c2, c3, c4, c5)

Note that d2 f /dx2 is used only in the Kα profile function.
If c2 > 1, the functions f and d f /dx are zero when x =
0. We use this property in selecting the profile functions.
Examples of the profile d f /dx, which is related to flow (see
Eq. (28)) are shown in Fig. A1. For the horizontal axis, we
use (1− x)1/2 which approximates the minor radius when x
is expressed by a parabolic function of the major radius R.
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