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Nonlinear interplay of the electron temperature gradient (ETG) modes and the trapped electron modes
(TEMs) was investigated by means of gyrokientic simulation. Focusing on the situation where both TEMs and
ETG modes are linearly unstable, the effects of TEM-driven zonal flows on ETG turbulence were examined by
means of entropy transfer analysis. In a statistically steady turbulence where the TEM driven zonal flows are
dominant, it turned out that the zonal flows meditate the entropy transfer of the ETG modes from the low to high
radial wavenumber regions. The successive entropy transfer broadens the potential fluctuation spectrum in the
radial wavenumber direction. In contrast, in the situation where ETG modes are unstable but TEMs are stable,
the pure ETG turbulence does not produce strong zonal flows, leading to a rather narrow spectrum in the radial
wavenumber space and a higher transport level.
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1. Introduction
Microinstabilities in toroidal plasmas have received

much attention due to their potential contribution to
anomalous heat and particle transport. In a low-beta op-
eration, it is often believed that the anomalous transport
stems from drift wave turbulence driven by microinsta-
bilities such as ion temperature gradient (ITG) mode [1],
trapped electron mode (TEM) [2] and electron tempera-
ture gradient (ETG) mode [3,4]. The drift wave turbulence
described by the gyrokinetic theory has been extensively
investigated by numerical simulations (see the review pa-
per [5]). As for the ion heat transport, the first principle
gyrokinetic simulations of the ITG turbulence yield physi-
cally reasonable results and are used to construct a simpli-
fied transport model [6, 7].

It is widely accepted that reduction of turbulent fluc-
tuations is brought by an E × B flow shear, especially, by
the zonal flow shear [8]. This idea works well for the ITG
turbulence. Still difficult to answer is whether the zonal
flow plays a leading role in the ETG turbulence. There are
two reasons for this: (i) the zonal flows produced by ETG
modes are much weaker than those driven by ITG modes
[3, 4] and (ii) the E × B shearing rate of the ITG-driven
zonal flows is often much lower than a typical growth rate
of the ETG modes [9]. So far, less attention has been paid
to the TEM-driven zonal flows, while they may have a rel-
atively smaller spatial scale than ITG-driven zonal flows.
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As the zonal flows with shorter wavelengths would have
larger shearing rates, the TEM-driven zonal flow may be
effective for the reduction of ETG fluctuations.

In our previous work, we investigated the influence of
TEM-driven zonal flows on ETG turbulence and showed
that the ETG turbulence can be regulated by the meso-scale
TEM-driven zonal flows [10]. It was also shown that the
E×B shearing rate of the TEM-driven zonal flows is larger
than or comparable to the growth rates of long-wavelength
ETG modes and TEMs which are likely to contribute to
the electron heat transport. In the present paper, for a bet-
ter understanding of the regulation mechanism of ETG tur-
bulence by the TEM-driven zonal flows, we examined the
nonlinear interactions of the ETG modes and TEM driven
zonal flows.

A promising way to analyze the nonlinear interactions
between the zonal flows and turbulence is the nonlinear en-
tropy transfer analysis [11–13] which evaluates the nonlin-
ear interactions of three different modes in the wavenum-
ber space. In Refs. [11, 12], the influence of ITG-driven
zonal flows on ITG turbulence was investigated by means
of the entropy transfer analysis. It has been shown that
the fluctuation spectra are broadened into the high radial
wavenumber region as a consequence of successive en-
tropy transfer [11, 12]. In accordance with the entropy
transfer analysis in ITG turbulence, we apply it to the ETG-
TEM turbulence to study the influence of the TEM-driven
zonal flows on ETG turbulence. We can directly evaluate
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how the different scales of instabilities, that is ETG modes
and TEMs in this case, interact via zonal flows. The result
is discussed in comparison with those for ITG turbulence.

This paper is organized as follows. In Sec. 2, we
present the electrostatic gyrokinetic equations and the en-
tropy balance relation used in this study. Nonlinear simu-
lation results including the entropy balance relation and the
dynamics of zonal flows are presented in Sec. 3. In Sec. 4,
we discuss the role of the TEM-driven zonal flows in the
ETG-TEM turbulence based on the findings by nonlinear
entropy transfer analysis. The obtained results are summa-
rized in Sec. 5.

2. Simulation Model
Since the subject of this work is the entropy transfer

analysis on our previous simulation data, the simulation
model employed in this work is completely the same as
that in Ref. [10]. Thus, we omit the model explanation
and simply write down the nonlinear electrostatic gyroki-
netic equation and the Poisson equation (see the details in
Refs. [10, 14, 15]). Rather, we describe in detail the en-
tropy balance equations [11, 16] that are more relevant to
this work.

2.1 Governing equations
In the wavenumber space, the electrostatic gyrokinetic

equation and the Poisson equation for the perturbed gyro-
center distribution function δ fsk⊥ are written as follows:[

∂
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∂
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where FMs = n0 (ms/2πTs)
3/2 exp[−(msv

2
‖ + 2μB)/2Ts] is

the Maxwellian representing the equilibrium distribution
function, and ωDs (ω∗s) means the magnetic (diamagnetic)
drift frequency. The subscript s represents each plasma
species, where s = i (e) is for ions (electrons). The back-
ground gradients of density and temperature are given by
Ln = |∇ln n|−1 and LTs = |∇ln Ts|−1, respectively. δψk⊥

is the gyro-phase averaged electrostatic potential which is
related to the potential evaluated at particle position δφk⊥

by δψk⊥ = J0sk⊥δφk⊥ . The collision operator is denoted by
Cs(δ fsk⊥) where we have employed the Lenard-Bernstein

model collision operator. See Ref. [10] for more details.
As for the abbreviations in Eq. (2), λDe =

(Te/4πn0e2)1/2 is the electron Debye length, δn(p)
s is the

density evaluated at particle position, J0sk⊥ = J0 (k⊥v⊥/Ωs)
and Γ0sk⊥ = I0 (bs) exp (−bs) with the gyrofrequency Ωs

and bs = k2
⊥ (vts/Ωs)

2 where the zeroth-order Bessel func-
tion and the zeroth-order modified Bessel function are de-
noted by J0 and I0, respectively.

For the ETG turbulence study, instead of Eq. (2), the
so-called adiabatic ion model is often employed where a
characteristic wavelength of turbulence is assumed to be
much shorter than the ion Larmor radius ρti i.e. k⊥ � ρ−1

ti .

Then, the ion density evaluated at particle position δn(p)
i is

approximated by

δn(p)
i = −n0

eiδφk⊥

Ti
, (3)

with J0ik⊥ ∼ 0 and Γ0ik⊥ ∼ 0. This model can describe
the ETG instability but not the TEM dynamics. In con-
trast, the kinetic ion model solving Eq. (1) for each species
with Eq. (2) can deal with both the ETG modes and TEMs.
We may find influences of TEMs on turbulence transport
through a comparison of simulation results from these two
models.

2.2 Entropy balance equation
For detailed analysis of nonlinear interactions, we in-

troduce the entropy balance equation [11, 16] which is de-
rived from Eqs. (1) and (2). By taking the velocity space
integral and flux surface average of Eq. (1) multiplied by
δ f ∗sk⊥

/FMs and taking the summation with its complex con-
jugate, we obtain the entropy balance equation for each
wavenumber,
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]
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]

〉
, (12)

with the characteristic length of pressure gradient Lps =

(L−1
n + L−1

T s)
−1. The flux surface average is denoted by 〈〉

and the complex conjugate is shown by ∗ mark. The non-
adiabatic part of the perturbed distribution function, hsk⊥ ,
is defined by

hsk⊥ = δ fsk⊥ + J0 (k⊥ρts)
esδφk⊥

Ts
FMs. (13)

Js
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]
in Tsk⊥ is called the triad entropy transfer

function defined by

Js
[
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1
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〉
,

(14)

where the wavanumber vectors k⊥′ and k⊥′′ in Eq. (1) are
replaced by −p⊥ and −q⊥, respectively, in order to empha-
size the symmetry in the triad-interaction for three different
modes. With this notation, the triad-interaction condition
for three different modes can be written as k⊥+p⊥+q⊥ = 0.

The triad entropy transfer function describes the en-
tropy flow in the perpendicular wavenumber space. In
Sec. 4, we investigate the interactions between turbulence
and zonal flow via the analysis of triad entropy transfer
function.

3. Simulation Results
In this section, we look back on the previous simula-

tion results [10] in terms of entropy balance and zonal flow
dynamics. The physical and numerical settings are found

Fig. 1 The time evolution of the entropy variables defined in Eqs. (5) - (12) for (a) adiabatic ion (ai) model and (b) kinetic ion (ki) model.
The numerical error Δ is much smaller than the summation of the transport terms, which means the entropy balance relation is
satisfied in both simulations.

in Ref. [10]. Nonlinear simulations employing the adia-
batic and kinetic ion models were performed to investigate
the difference of the pure ETG turbulence and ETG-TEM
turbulence [10]. The adiabatic ion model is used for the
pure ETG turbulence, whereas the kinetic ion model is em-
ployed for the ETG-TEM turbulence. It was shown that the
ETG and TEM turbulence are simultaneously regulated by
the TEM-driven zonal flows in the ETG-TEM turbulence
case. To understand the underlining physics for the regula-
tion of the ETG turbulence by the TEM-driven zonal flow,
we applied the entropy transfer analysis to the simulation
data shown in Ref. [10] and clarified the role of the TEM-
driven zonal flow.

3.1 Entropy balance relation
In this subsection, we investigate the time evolution of

entropy variables (see Eqs. (5) - (12)) and discuss the dif-
ferences in the simulation results from adiabatic and ki-
netic ion models. It should be remarked that the only dif-
ference in the above two simulations is the treatment of
ions (see Eqs. (2) and (3)).

Figure 1 shows the time evolution of the entropy bal-
ance relation, where the summation of the time derivative
terms ∂

∂t

(∑
s TsδS s +W

) (
=

∑
k⊥

∂
∂t

(∑
s TsδS sk⊥ +Wk⊥

))
,

the summation of the transport terms
∑

s TsFs

(
=∑

s Ts
∑

k⊥ Fsk⊥ =
∑

s
∑

k⊥ (qsk⊥/LT s + TsΓsk⊥/Lps)
)
,

and the dissipation terms
∑

s TsDs(=
∑

s Ts
∑

k⊥ Dsk⊥ )
are plotted for the (a) adiabatic and (b) kinetic ion
cases. The summation of entropy transfer term
Tsk⊥ over k⊥ is zero, that is

∑
k⊥ Tsk⊥ = 0. Since

Δ
(
= ∂

∂t

(∑
s TsδS s +W

) − ∑
s TsFs −

∑
s TsDs

)
is much

smaller than the sum of the transport terms, the entropy
balance relation is well satisfied for both simulations.
Thus, these two simulations can be the subjects of the
entropy transfer analysis [11] which are described in
Sec. 4.

As shown in Figs. 1 (a) and (b), the initial increase
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in the sum of the heat and particle transport due to the
linear growth of ETG modes and a following statistical
steady state are almost the same for the two cases un-
til t = 900 (Ln/vte). The reduction of the transport at
t = 1200 (Ln/vte) is found in the kinetic ion case, but not
in the adiabatic ion case. After t > 1400 (Ln/vte), a statisti-
cally steady state is achieved in both cases, where the low
transport level is sustained in the kinetic ion case. The dif-
ference in the transport level is explained by a difference
in the zonal flow dynamics as described in Sec. 3.2.

3.2 Dynamics of zonal flow
To reveal the fundamental difference of zonal flows

driven by ETG modes and by TEMs, we compare the
squared amplitude of zonal flows calculated with the adi-
abatic and kinetic ion models. Although the ETG modes
are unstable in both models, the TEMs are unstable only in
the kinetic ion case. Figure 2 (a) shows the time evolution
of the squared amplitude of zonal flows

∑
kx
〈|δφkx, ky=0|2〉

calculated by the adiabatic and kinetic ion models. Here,
kx and ky represent the radial and poloidal wavenumbers,
respectively (Detailed definitions are found in Ref. [10]).
While the ETG dominant phase before t = 700 (Ln/vte)
is almost the same for the two cases, the zonal flow in
the kinetic ion case grows again for 700 (Ln/vte) ≤ t ≤
1200 (Ln/vte) to achieve a larger amplitude in the statis-
tical steady state than in the adiabatic ion case around
t ∼ 2500 (Ln/vte). The zonal flow structure is also
compared in terms of the radial wavenumber spectra as
shown in Fig. 2 (b). Both spectra have peaks at kxρte =

0.044 (kxρti = 1.88), while the peak value is much higher
in the kinetic ion case. According to the calculation of
the residual zonal flow level for a wide wavenumber range
covering both the ion and electron dynamics [17,18], zonal
flows with kxρte = 0.05 (kxρti = 2) are most likely to sur-
vive due to the less effective shielding effects of ions and

Fig. 2 Zonal component of electrostatic potential: (a) the time evolution of the squared amplitude of zonal flow potential
∑

kx
〈|δφkx , ky=0|2〉,

and (b) the time averaged wavenumber spectra of zonal flow 〈|δφkx , ky=0|2〉/Δkx calculated by adiabatic ion (ai) and kinetic ion (ki)
simulation results, where the time-average is taken over 2300 (Ln/vte) ≤ t ≤ 2500 (Ln/vte). The pure ETG turbulence and the
ETG-TEM turbulence are found in the adiabatic and kinetic ion cases, respectively. The stronger zonal flow is driven in the kinetic
ion case.

electrons. The highest peak in the kinetic ion case is ex-
plained by the existence of the zonal flow drive, that is, the
trapped electron mode whose characteristic wavenumber
is about kyρti ∼ 1. Through the entropy transfer analysis
in Sec. 4, it is shown that the zonal flow is driven in fact
by the TEM in the kinetic ion case. Interactions between
zonal flows and ETG turbulence are also investigated by
means of the entropy transfer analysis.

4. Nonlinear Entropy Transfer Pro-
cess
As shown in Sec. 3.2, the stronger zonal flow is gener-

ated in the kinetic ion case than in the adiabatic ion case. In
order to identify the sources of zonal flows and to evaluate
effects of zonal flows on ETG turbulence regulation, we in-
vestigated the nonlinear entropy transfer in the wavenum-
ber space. Fluctuation spectrum of the ETG turbulence is
also discussed in relation to the entropy transfer process.

4.1 Identification of zonal flow drive
Turbulent source of zonal flows (ZFs) are identified

by the entropy transfer analysis in this subsection. Fig-
ure 3 shows the wavenumber spectra of the entropy trans-
fer functionJe

[
kZF|p⊥,q⊥

]
for kZFρte = 0.044 normalized

to the sum of the transport terms Fsk⊥ (defined in Eq. (7)).
Hereinafter, the overlines on variables represent the time-
average. The time-average is taken over 70 (Ln/vte) ≤
t ≤ 110 (Ln/vte) [1050 (Ln/vte) ≤ t ≤ 1150 (Ln/vte)] for the
transfer from ETG modes (TEMs) to zonal flow. The aver-
aging period is estimated by the linear growth rate of ETG
modes as τave ∼ γ−1

ETG ∼ 10 (Ln/vte). Similarly, the aver-
aging period for the TEM case is estimated by the linear
growth rate of TEMs as τave ∼ γ−1

TEM ∼ 200 (Ln/vte). The
growth rates of ETG modes and TEMs are found in Fig. 1
in Ref. [10].
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Fig. 3 Wavenumber spectra of the entropy transfer function normalized to the summation of the transport terms, J e
[
kZF|p⊥,q⊥

]
/F e for

the zonal mode with kZFρte = 0.044: (a) Zonal flow generation in the adiabatic ion case with the time-average for 70 (Ln/vte) ≤
t ≤ 110 (Ln/vte) and (b) zonal flow generation in the kinetic ion case with time average for 1050 (Ln/vte) ≤ t ≤ 1150 (Ln/vte). The
zonal flow is initially driven by high wavenumber ETG modes both in the adiabatic and kinetic ion cases (a), and later driven by
TEMs in the kinetic ion case (b).

As shown in Fig. 3 (a), peaks of Je
[
kZF|p⊥,q⊥

]
/F e

in the adiabatic ion case are found at high wavenum-
ber region around qyρte ∼ 0.4. It means that the
zonal flow is mainly driven by the high-wavenumber ETG
modes. The spectrum of Je

[
kZF|p⊥,q⊥

]
/F e averaged

over 70 (Ln/vte) ≤ t ≤ 110 (Ln/vte) in the kinetic ion case
(not shown) is almost the same as in the adiabatic ion case.
This implies that the zonal flows are initially driven by the
linearly unstable ETG modes.

In the later time for t > 1050 (Ln/vte) in the kinetic
ion case, however, the zonal component receives the en-
tropy from low wavenumber modes with qyρte = ±0.035
which correspond to the TEMs (see Fig. 3 (b)). The en-
tropy transfer from the high wavenumber ETG modes is
relatively small compared to the transfer from the low
wavenumber TEMs. Our conclusion remains unchanged,
even when we take the summation of the entropy trans-
fer function for zonal flow,

∑
kx
Je

[
kZF|p⊥,q⊥

]
/F e. As

shown in Fig. 4, the zonal flow mainly receives the en-
tropy from low wavenumber modes with qyρte = ±0.035,
since the (kx, ky) = (0.044, 0) mode is the dominant Fourier
mode of zonal flows.

The above results manifest existence of the different
sources of zonal flows, that is the ETG modes in the initial
phase of the adiabatic and kinetic ion cases and the TEMs
in the latter phase of the kinetic ion case.

4.2 Entropy transfer via zonal flow
In the steady state of ITG turbulence, it is reported

that the zonal flow works as a mediator which transfers the
entropy from the primary ITG modes to the higher radial-
wavenumber modes [11]. By contrast, in the steady state
of the pure ETG turbulence, zonal flows do not contribute
to the successive entropy transfer in the radial wavenum-
ber direction. In this context, the role of TEM driven zonal
flows in the ETG-TEM turbulence was investigated. Fig-
ure 5 shows the wavenumber spectra of the entropy transfer

Fig. 4 Wavenumber spectra of the total entropy transfer from
turbulence to zonal flow normalized to the summation of
the transport terms,

∑
kx
Je

[
kZF|p⊥,q⊥

]
/F e. The time

average is taken over 1050 (Ln/vte) ≤ t ≤ 1150 (Ln/vte).
The zonal flow receives entropy mainly from TEMs with
qyρte = ±0.035.

function Je
[
p⊥|q⊥,k⊥

]
/F e for the adiabatic (Figs. 5 (a),

(c) and (e)) and kinetic ion cases (Figs. 5 (b), (d) and (f))
with p⊥ ≡ (pxρte, pyρte) = (0, 0.21), (0.044, 0.21) and
(0.088, 0.21), respectively, where the ETG mode with
(pxρte, pyρte) = (0, 0.21) has the largest amplitudes amid
all the unstable modes. As is often the case, ETG turbu-
lence shows the inverse-cascade process where the largest
amplitude mode is shifted from the most unstable mode
to lower wavenumber modes, since the energy is mainly
transferred to larger scales (See for example, Ref. [19]).
The change of dominant mode from kyρte ∼ 0.4 to kyρte ∼
0.2 can also be considered as a typical inverse cascade pro-
cess in ETG turbulence. The time average is taken over
2300 (Ln/vte) ≤ t ≤ 2500 (Ln/vte), where the averaging pe-
riod is estimated from the linear growth rate of TEMs as
τave ∼ γ−1

TEM ∼ 200 (Ln/vte).
In Fig. 5 (b), the two-stripe pattern at pyρte = 0 and

pyρte = −0.21 is found which indicates that the p⊥ mode
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Fig. 5 Wavenumber spectra of the entropy transfer function normalized to the sum of the transport terms, J e
[
p⊥|q⊥,k⊥

]
/F e for

(pxρte, pyρte) = (0, 0.21), (0.044, 0.21) and (0.088, 0.21) with the fixed pyρte = 0.21 in the steady state for the adiabatic (left col-
umn) and kinetic ion (right column) cases, where the time-average is taken over 2300 (Ln/vte) ≤ t ≤ 2500 (Ln/vte). The successive
entropy transfer of the dominant ETG mode into the high radial wavenumber region is found in the ETG-TEM turbulence ((b), (d)
and (f)), but not in the ETG turbulence ((a), (c) and (e)).

with (pxρte, pyρte) = (0, 0.21) dominantly interacts with
the other non-zonal mode (qxρte, qyρte) = (−0.044,−0.21)
via the zonal mode (kxρte, kyρte) = (0.044, 0). It is also
found in Fig. 5 (d) that the (pxρte, pyρte) = (0.044, 0.21)
mode interacts with (qxρte, qyρte) = (−0.088,−0.21)
via the zonal mode with (kxρte, kyρte) = (0.044, 0).
Considering the reality condition of the physical vari-
ables, it is shown that the −q⊥ mode is equivalent
to the q⊥ mode. Thus, it can be rephrased that the
(pxρte, pyρte) = (0.044, 0.21) mode transfers the entropy
to the (qxρte, qyρte) = (0.088, 0.21) via the zonal mode.
In the same way, the (pxρte, pyρte) = (0.088, 0.21) mode
transfers the entropy to the (qxρte, qyρte) = (0.132, 0.21)

via the zonal mode as shown in Fig. 5 (f). These figures
show that the TEM-driven zonal flow contributes to the
successive entropy transfer of the ETG mode in the radial
wavenumber direction. In the adiabatic ion case, however,
there is no clear spectral structure suggesting the succes-
sive entropy transfer to the non-zonal modes with higher
radial wavenumbers (See Figs. 5 (a), (c) and (e)) which is
consistent with the earlier work [11]. It is concluded that
the successive entropy transfer to the higher wavenumber
mode in the adiabatic ion case is much weaker than in the
kinetic ion case.

The successive entropy transfer process in the ki-
netic ion case is summarized in Fig. 6. Figure 6 (a) shows
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Fig. 6 Diagram for the nonlinear entropy transfer in the perpendicular wavenumber space: (a) an element of the diagram which represents
the relationships between the three different modes k⊥, p⊥ and q⊥, (b) the diagram of the entropy transfer of the ETG modes under
the TEM-driven zonal flow. The successive entropy transfer from the ETG mode with low kx to high kx is shown.

the element of the diagram which represents the relation-
ships among the three different modes k⊥, p⊥ and q⊥
(see Ref. [13] for details). The arrows represent signs
of Je

[
k⊥|p⊥,q⊥

]
, Je

[
p⊥|q⊥,k⊥

]
and Je

[
q⊥|k⊥,p⊥

]
, re-

spectively, where Je
[
k⊥|p⊥,q⊥

]
> 0, Je

[
p⊥|q⊥,k⊥

]
<

0 and Je
[
q⊥|k⊥,p⊥

]
< 0 in Fig. 6 (a). Figure 6 (b)

shows the diagram for the entropy transfer process in
the steady state of ETG-TEM turbulence. As shown
in Fig. 5 (b), the contour plot of Je

[
p⊥|q⊥,k⊥

]
/F e

has the peaks with negative values at (qxρte, qyρte) =
(−0.044,−0.21) and (kxρte, kyρte) = (0.044, 0), represent-
ing the entropy transfer from (pxρte, pyρte) = (0, 0.21)
to (qxρte, qyρte) = (−0.044,−0.21) and zonal mode
(kxρte, kyρte) = (0.044, 0). This triad interaction is sum-
marized in Fig. 6 (b), where the ETG mode (pxρte, pyρte) =
(0.044, 0.21) receives the entropy from the ETG mode
(pxρte, pyρte) = (0, 0.21) with the value of 0.26×10−3 and
from the zonal mode (kxρte, kyρte) = (0.044, 0) with the
value of 0.2×10−3. In total, the ETG mode (pxρte, pyρte) =
(0.044, 0.21) receives the entropy of 0.46 × 10−3.

Figure 5 (d) shows that the Je
[
p⊥|q⊥,k⊥

]
/F e has

the peaks with negative values at (qxρte, qyρte) =

(−0.088,−0.21) and (kxρte, kyρte) = (0.044, 0), rep-
resenting the entropy transfer from (pxρte, pyρte) =
(0.044, 0.21) to (qxρte, qyρte) = (−0.088,−0.21) and
the zonal mode (kxρte, kyρte) = (0.044, 0). The
positive peaks at (qxρte, qyρte) = (0,−0.21) and
(kxρte, kyρte) = (−0.044, 0) mean that the (pxρte, pyρte) =
(0.044, 0.21) mode receives the entropy from the primary
mode (pxρte, pyρte) = (0, 0.21) and the zonal mode
(kxρte, kyρte) = (−0.044, 0). In summary, the ETG mode
with (pxρte, pyρte) = (0.044, 0.21) receives the entropy
from the (pxρte, pyρte) = (0, 0.21) mode and then sends
the entropy to the (pxρte, pyρte) = (0.088, 0.21), which
means the successive entropy transfer from the dominant
ETG mode to the high radial wavenumber region via TEM
driven zonal flow. Similarly, Fig. 4 (f) shows that the
(pxρte, pyρte) = (0.088, 0.21) mode receives the entropy
from the (pxρte, pyρte) = (0.044, 0.21) and then transfers
to the (qxρte, qyρte) = (0.132, 0.21) (see the rightmost ele-
ment of the diagram in Fig. 6 (b)). Again, this is a part of
successive entropy transfer process of ETG modes by the
TEM driven zonal flow.

4.3 Difference in fluctuation spectra
In this subsection, we present the impact of the succes-

sive entropy transfer on the wavenumber spectra of fluctu-
ations. Figures 7 (a) and (b) show the normalized power
spectra of potential fluctuation 〈|δφk⊥ |2〉 /

∑
ky�0 〈|δφk⊥ |2〉

for the adiabatic and kinetic ion cases, where time-average
is taken over 2300 (Ln/vte) ≤ t ≤ 2500 (Ln/vte). It is found
that the wavenumber spectra of electrostatic potential in
the kinetic ion case is more expanded in the high kx region
(shown in Fig. 7 (b)) than in the adiabatic ion case (shown
in Fig. 7 (a)).

Figures 7 (c) and (d) show the normalized spectra of
the energy flux Qek⊥ /

∑
k⊥ Qek⊥ (defined in Eq. (9)) for the

adiabatic and kinetic ion cases.
The spectrum of the energy flux in the kinetic ion case

is also found broadened in the radial wavenumber direction
compared to the adiabatic ion case. The broader wavenum-
ber spectrum in the kinetic ion case is considered as a con-
sequence of the successive entropy transfer process in the
ETG modes via the TEM-driven zonal flow. The similar
broadening of the fluctuation spectrum has been also re-
ported in the toroidal ITG turbulence, and is attributed to
the successive entropy transfer via ITG-driven zonal flows
[11]. Here, it should be emphasized that the TEM-driven
zonal flows effectively regulate the different kind of turbu-
lence with high wave numbers, that is, the ETG turbulence,
leading to modification of the turbulent fluctuation spectra.
This is not the case for the ITG turbulence, where the ITG
turbulence is regulated by the self-generated zonal flows.

5. Summary
In this work, the entropy transfer analysis [11] was ap-

plied to the previous gyrokinetic simulation data of pure
ETG and ETG-TEM turbulence in order to examine the
regulation process of ETG modes found in the ETG-TEM
turbulence simulation [10]. In Ref. [10], we showed that
the transport level in the ETG-TEM turbulence is much
lower than in the pure ETG turbulence. It turned out that
the lower transport level in the ETG-TEM turbulence stems
from the stronger zonal flows driven by TEMs. In order
to understand the role of zonal flow, the entropy transfer
process was investigated for the saturation and steady-state
phases of pure ETG and ETG-TEM turbulence. Relation-
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Fig. 7 Wavenumber spectra of the normalized potential fluctuation 〈|δφk⊥ |2〉 /
∑

ky�0 〈|δφk⊥ |2〉 [(a) and (b)] and the normalized energy

flux Qek⊥ /
∑

k⊥ Qek⊥ [(c) and (d)] in the steady states of the adiabatic ion (upper row) and kinetic ion (lower row) cases, where
time-average is taken over 2300 (Ln/vte) ≤ t ≤ 2500 (Ln/vte). The wavenumber spectra for the ETG-TEM turbulence ((b) and (d))
are broadened in the radial wavenumber direction, while those for the ETG turbulence ((a) and (c)) are confined in the lower radial
wavenumber region.

ships between the entropy transfer and the wavenumber
spectra of electrostatic potential fluctuations and energy
flux were also discussed.

First, we have confirmed conservation of the quadratic
quantities, i.e. the entropy balance relation [11, 16], which
provides a solid basis for the entropy transfer analysis.
Then, the source of zonal flows for both simulations were
investigated by means of the entropy transfer analysis.
We identified the entropy transfer from the low wavenum-
ber TEMs to zonal flows in the ETG-TEM turbulence,
whereas the entropy transfer from the high wavenumber
ETG modes to zonal flows was found in the ETG turbu-
lence. It is concluded that the strong zonal flow found in
the ETG-TEM turbulence is driven by TEMs. The dif-
ference in the zonal flow amplitudes is explained by the
larger residual zonal flow level at low wavenumber TEM
scale than at high wavenumber ETG scale as discussed in
Ref. [10].

The role of the zonal flows in steady state was also in-
vestigated. In the ETG-TEM turbulence, it turned out that
the zonal flows meditate the entropy transfer of the ETG
modes from low to high radial wavenumber regions. The
successive entropy transfer broadens the fluctuation spec-
trum in the radial wavenumber direction. The high radial
wavenumber modes are stabilized by the finite Larmor ra-
dius effect and less likely contribute to energy transport.
Thus the successive entropy transfer results in the trans-
port reduction. These characteristics of TEM driven zonal
flows in the ETG-TEM turbulence are quite similar to those

of ITG driven zonal flows in the ITG turbulence [11]. In
contrast, in the situation where ETG modes are unstable
but TEMs are stable, the pure ETG turbulence does not
produce strong zonal flows, leading to a relatively narrow
spectrum in the radial wavenumber direction. Through
nonlinear entropy transfer analysis, it was shown that in-
stabilities with the different scales, such as ETG modes and
TEMs can interact via zonal flows.
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