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Self-healing (spontaneous shrinkage) of externally induced magnetic islands is a critical issue in helical
systems, where helical ripple-induced neoclassical viscous torques play essential roles. In this study, effective
helical ripple rates of magnetic fields in multi-helicity helical systems are revisited. In a typical parameter regime
of the Large Helical Device, effective helical ripple rates are sensitive to magnetic axis positions. An extended
theory of the self-healing taking into account effective helical ripple rates is firstly developed. It is newly found
that self-healing thresholds considerably depend on magnetic axis positions, which is due to neoclassical viscous
torques depending on effective helical ripple rates.
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In magnetic confinement fusion with toroidal devices,
magnetic islands are produced by externally induced reso-
nant magnetic perturbations (RMPs) through forced mag-
netic reconnection. In the Large Helical Device (LHD),
spontaneous shrinkage of RMP-induced magnetic islands
has been observed, known as self-healing [1, 2], which
is a critical issue for divertor configurations with mag-
netic islands. Historically, magnetic reconnection in he-
lical systems has been investigated in the context of the
curvature-driven tearing mode [3–5]. It has been pointed
out that resonant Pfirsch-Schlüter current, perturbed boot-
strap current, and polarization current are hopeless to ex-
plain the self-healing of large magnetic islands with bifur-
cation characteristics in low-β regimes [1, 2], where β is a
ratio of total plasma pressure to magnetic pressure. For
these reasons, a new mechanism of the self-healing was
required. By analogy with tokamaks [6], it has been at-
tempted to explain the self-healing by shielding effects of
helical ripple-induced neoclassical flows [7–9]. In helical
systems, a magnetic axis position is one of key parame-
ters to control neoclassical transport, where magnetic axis
shifts are associated with multi-helicity effects of back-
ground magnetic fields. It is known that optimal mag-
netic axis shifts drastically improve neoclassical trans-
port [10–13], which is caused by changes of effective heli-
cal ripple rates [11,13]. Because a self-healing threshold is
determined by a balance between island-induced electro-
magnetic torques and helical ripple-induced neoclassical
viscous torques [7–9], changes of effective helical ripple
rates might directly affect the self-healing threshold. In
the present study, we check this hypothesis, which has not
been addressed in previous works.
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Model equations used in this study are originated from
those in our previous work [7]. We consider a helical
plasma with an averaged minor radius a and an averaged
major radius R0, which is mainly produced by helically
winding coils with a pole number l and a pitch number
N. In the following, (r, θ, z) indicate cylindrical coordi-
nates, where r is the averaged minor radial position, θ is
the poloidal angle, and z is the distance in the toroidal
direction. We consider a resonant mode at the rational
surface r = rs. A single-helicity RMP with poloidal and
toroidal mode numbers (m, n) is considered, which pro-
duces a vacuum island with a radial width wv and phase an-
gles (θ, z) = (θ0, z0) . The model is composed of an island
width evolution equation, an island phase evolution equa-
tion, and a poloidal flow evolution equation. The poloidal
flow is due to an E × B drift. In writing the model equa-
tions, we consider a so-called Rutherford regime, no curva-
ture limit, and the toroidal currentless limit. Considering a
stationary state of evolution equations, which corresponds
to a penetration state of RMP, we obtain a balance relation
of electromagnetic torques and viscous torques as [7]
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where we omitted electron diamagnetic drift, because elec-
tron pressure is flatten inside large magnetic islands, ΔΘ =
Θ − Θ0 is the magnetic island phase angle measured from
those of vacuum islands, i.e., Θ0 = mθ0 − nz0/R0, Δ′0 (< 0)
is the tearing mode stability parameter, kθs = m/rs, vAs

is the Alfvén velocity, Ls is the magnetic shear length, μ
is the poloidal momentum diffusivity, Vneo

s is the ion neo-
classical flow velocity, λ = (μ/νneo

s )1/2 is the typical scale
length of neoclassical flows, and νneo

s is the ion neoclas-
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sical damping rate. The ion neoclassical damping rate is
defined by νneo

s = ( f ε2t ε
3/2
h V2

⊥i/ρ
2
i νi)|rs , where f is the nu-

merical factor of order unity, εt = r/R0, εh is the helical
ripple rate (relative magnitude of helical ripples of mag-
netic fields), V⊥i is the ion toroidal drift velocity, ρi is the
ion Larmor radius, and νi is the ion collision frequency.
In writing Eq. (1), we consider the following assumptions:
influence of magnetic islands on the neoclassical viscos-
ity is negligible since magnitude of helical ripples due to
magnetic islands is much smaller than that of background
magnetic fields; ion neoclassical viscosity is dominant; the
ion neoclassical damping rate shows so-called 1/ν depen-
dence; viscous torques are evaluated in an anomalous vis-
cosity dominant regime [7], where λ � w/2. The RHS
of Eq. (1) has a fixed value for a given equilibrium, while,
the LHS of Eq. (1) has the maximum absolute value when
ΔΘ = ±π/4 [8]. Thus, Eq. (1) with | sin (2ΔΘ)| = 1 gives
the threshold of existence of locked, large magnetic islands
as
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In other words, the self-healing occurs when wv becomes
smaller than that given by Eq. (2). Thus, the self-healing
threshold of RMP amplitude is a monotonic increasing
function of εh.

Next, multi-helicity effects of background magnetic
fields on the torque balance are discussed. We assume
that magnitude of background magnetic fields in heli-
cal systems is approximated by B/B0 = 1 − εt cos θ +∑

j=0,±1 ε
( j)
h cos [( j + l)θ − N(z/R0)]. In neoclassical trans-

port, trapped particles enhance radial particle and heat
fluxes. According to a theory in Ref. [10], the radial parti-
cle flux in the 1/ν regime is proportional to a factor S . In
our case, S is given by
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where h = (C2 +D2)1/2/ε(0)
h , C = ε(0)
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0.684. Note that the sign of εt is different from that in Ref.
[10]. In the absence of the sideband Fourier components
of background magnetic fields, i.e., ε(±1)
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eff , where εeff is an effective helical ripple

rate which involves multi-helicity effects [11, 13]. In other
words, the effective helical ripple rate is evaluated as
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Fig. 1 Magnetic axis position dependence of S/S 0 and εeff/ε
(0)
h .

Fig. 2 Self-healing threshold of w2
v/w

2
v0 (proportional to RMP

amplitude) with different values of Rax.

Considering Eqs. (2)–(4), the self-healing threshold of w2
v

(proportional to RMP amplitude) is written as
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where wv0 is defined by the self-healing threshold in the
absence of the sideband Fourier components as wv0 =

wv|S=S 0
. In order to calculate Eq. (3), values of ε(±1)

h /ε(0)
h

are sampled from numerical calculations of the magnetic
fields in Ref. [12], which correspond to LHD experiments
with different values of magnetic axis positions Rax. Note
that a relation |Rax − R0|/R0 < a/R0 � 1 is typically
satisfied, and changes of equilibrium quantities are neg-
ligible in comparison with that of εeff. Using data of
ε(±1)

h /ε(0)
h at r/a = 0.84 in cases of Rax = 3.6 [m] and

Rax = 3.75 [m] [12], fitted curves for Rax dependence of
ε(±1)

h /ε(0)
h are obtained based on the first-order Lagrange

interpolating polynomials, where r/a = 0.84 is regarded
as the rational surface. In addition, the value of εt/ε

(0)
h is

not sensitive to Rax [12], therefore, εt/ε
(0)
h = 0.6 is used.

Figure 1 shows the Rax dependence of S/S 0 and εeff/ε
(0)
h ,

where the fitted curves of ε(±1)
h /ε(0)

h are used. It is found
that S/S 0 and εeff/ε

(0)
h strongly depend on Rax. Figure 2
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shows the Rax dependence of the self-healing threshold of
w2

v/w
2
v0. It is found that strong dependence of εeff on Rax re-

sults in the over two times difference of the threshold value
of the RMP amplitude.

In summary, it is newly found that the self-healing
threshold of externally induced magnetic islands substan-
tially depends on magnetic axis positions. This work ex-
plores a methodology to control the self-healing by effec-
tive helical ripples of background magnetic fields. Exten-
sion of the theory to more general cases and detailed com-
parison with experimental observations are left as future
works.
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