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Self-healing (spontaneous shrinkage) of externally induced magnetic islands is a critical issue in helical
systems, where helical ripple-induced neoclassical viscous torques play essential roles. In this study, effective
helical ripple rates of magnetic fields in multi-helicity helical systems are revisited. In a typical parameter regime
of the Large Helical Device, effective helical ripple rates are sensitive to magnetic axis positions. An extended
theory of the self-healing taking into account effective helical ripple rates is firstly developed. It is newly found
that self-healing thresholds considerably depend on magnetic axis positions, which is due to neoclassical viscous

torques depending on effective helical ripple rates.
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In magnetic confinement fusion with toroidal devices,
magnetic islands are produced by externally induced reso-
nant magnetic perturbations (RMPs) through forced mag-
netic reconnection. In the Large Helical Device (LHD),
spontaneous shrinkage of RMP-induced magnetic islands
has been observed, known as self-healing [1, 2], which
is a critical issue for divertor configurations with mag-
netic islands. Historically, magnetic reconnection in he-
lical systems has been investigated in the context of the
curvature-driven tearing mode [3-5]. It has been pointed
out that resonant Pfirsch-Schliiter current, perturbed boot-
strap current, and polarization current are hopeless to ex-
plain the self-healing of large magnetic islands with bifur-
cation characteristics in low-g regimes [1, 2], where § is a
ratio of total plasma pressure to magnetic pressure. For
these reasons, a new mechanism of the self-healing was
required. By analogy with tokamaks [6], it has been at-
tempted to explain the self-healing by shielding effects of
helical ripple-induced neoclassical flows [7-9]. In helical
systems, a magnetic axis position is one of key parame-
ters to control neoclassical transport, where magnetic axis
shifts are associated with multi-helicity effects of back-
ground magnetic fields. It is known that optimal mag-
netic axis shifts drastically improve neoclassical trans-
port [10-13], which is caused by changes of effective heli-
cal ripple rates [11, 13]. Because a self-healing threshold is
determined by a balance between island-induced electro-
magnetic torques and helical ripple-induced neoclassical
viscous torques [7-9], changes of effective helical ripple
rates might directly affect the self-healing threshold. In
the present study, we check this hypothesis, which has not
been addressed in previous works.
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Model equations used in this study are originated from
those in our previous work[7]. We consider a helical
plasma with an averaged minor radius a and an averaged
major radius Ry, which is mainly produced by helically
winding coils with a pole number / and a pitch number
N. In the following, (r,6,z) indicate cylindrical coordi-
nates, where r is the averaged minor radial position, 6 is
the poloidal angle, and z is the distance in the toroidal
direction. We consider a resonant mode at the rational
surface r = r;. A single-helicity RMP with poloidal and
toroidal mode numbers (m,n) is considered, which pro-
duces a vacuum island with a radial width w, and phase an-
gles (8, z) = (6p,20) - The model is composed of an island
width evolution equation, an island phase evolution equa-
tion, and a poloidal flow evolution equation. The poloidal
flow is due to an E X B drift. In writing the model equa-
tions, we consider a so-called Rutherford regime, no curva-
ture limit, and the toroidal currentless limit. Considering a
stationary state of evolution equations, which corresponds
to a penetration state of RMP, we obtain a balance relation
of electromagnetic torques and viscous torques as [7]
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where we omitted electron diamagnetic drift, because elec-
tron pressure is flatten inside large magnetic islands, A® =
® — O is the magnetic island phase angle measured from
those of vacuum islands, i.e., ®y = mfy — nzo/Ro, Aj (< 0)
is the tearing mode stability parameter, kgs = m/rs, vas
is the Alfvén velocity, L, is the magnetic shear length, u
is the poloidal momentum diffusivity, Vi is the ion neo-
classical flow velocity, A = (u/v°)!/? is the typical scale
length of neoclassical flows, and vi*® is the ion neoclas-
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sical damping rate. The ion neoclassical damping rate is
defined by v*° = (fe?&)/*V2,/p?vi),., where f is the nu-
merical factor of order unity, & = r/Ry, &, is the helical
ripple rate (relative magnitude of helical ripples of mag-
netic fields), V; is the ion toroidal drift velocity, p; is the
ion Larmor radius, and v; is the ion collision frequency.
In writing Eq. (1), we consider the following assumptions:
influence of magnetic islands on the neoclassical viscos-
ity is negligible since magnitude of helical ripples due to
magnetic islands is much smaller than that of background
magnetic fields; ion neoclassical viscosity is dominant; the
ion neoclassical damping rate shows so-called 1/v depen-
dence; viscous torques are evaluated in an anomalous vis-
cosity dominant regime [7], where 4 > w/2. The RHS
of Eq. (1) has a fixed value for a given equilibrium, while,
the LHS of Eq. (1) has the maximum absolute value when
A® = +71/4[8]. Thus, Eq. (1) with |sin (2AB®)| = 1 gives
the threshold of existence of locked, large magnetic islands
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In other words, the self-healing occurs when w, becomes
smaller than that given by Eq. (2). Thus, the self-healing
threshold of RMP amplitude is a monotonic increasing
function of €.

Next, multi-helicity effects of background magnetic
fields on the torque balance are discussed. We assume
that magnitude of background magnetic fields in heli-
cal systems is approximated by B/By = 1 — cosf +
2 j=0,41 e}(lj) cos [(j+ DO — N(z/Rp)]. In neoclassical trans-
port, trapped particles enhance radial particle and heat
fluxes. According to a theory in Ref. [10], the radial parti-
cle flux in the 1/v regime is proportional to a factor S. In
our case, S is given by
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where it = (C? + D)2/, C = €” + (" + ) cos 6,
D=(g"-€e")sing, G, = 16/9, G, = 16/15, and G5 =
0.684. Note that the sign of ¢ is different from that in Ref.
[10]. In the absence of the sideband Fourier components
of background magnetic fields, i.e., el(fl) =0, S is reduced
to Sog = G17I'Et2 (6}(10))3/2. In general cases, we express S
as § = Glﬂefe:f/fz, where e is an effective helical ripple
rate which involves multi-helicity effects [11, 13]. In other

words, the effective helical ripple rate is evaluated as
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Fig. 1 Magnetic axis position dependence of S/S( and €./ q(‘o).
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Fig.2 Self-healing threshold of w?/w?, (proportional to RMP
amplitude) with different values of R,.

Considering Eqs. (2)—(4), the self-healing threshold of w?
(proportional to RMP amplitude) is written as
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where wyg is defined by the self-healing threshold in the
absence of the sideband Fourier components as wyg =
wylg—g,. In order to calculate Eq.(3), values of €. /¢
are sampled from numerical calculations of the magnetic
fields in Ref. [12], which correspond to LHD experiments
with different values of magnetic axis positions R,;. Note
that a relation |R,x — Rol/Ry < a/Ry < 1 is typically
satisfied, and changes of equilibrium quantities are neg-
ligible in comparison with that of eg. Using data of
6](1¢1)/E}(]0) at r/a = 0.84 in cases of R;yx = 3.6[m] and
R.x = 3.75[m] [12], fitted curves for R,x dependence of
e}(lil) / 61(10) are obtained based on the first-order Lagrange
interpolating polynomials, where r/a = 0.84 is regarded
as the rational surface. In addition, the value of ¢/ 61(10) is
not sensitive to R,y [12], therefore, et/el(lo) = 0.6 is used.
Figure 1 shows the R,x dependence of S/S( and e/ E(O),
where the fitted curves of e}gﬂ) / 61(10) are used. It is found
that S/S( and Eeff/el(l()) strongly depend on R,x. Figure 2
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shows the R,y dependence of the self-healing threshold of
w}/w?,. It is found that strong dependence of € on Ry re-
sults in the over two times difference of the threshold value
of the RMP amplitude.

In summary, it is newly found that the self-healing
threshold of externally induced magnetic islands substan-
tially depends on magnetic axis positions. This work ex-
plores a methodology to control the self-healing by effec-
tive helical ripples of background magnetic fields. Exten-
sion of the theory to more general cases and detailed com-
parison with experimental observations are left as future
works.
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