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The applicability of the scanning permanent-magnet method (SPM) to the crack identification in a high-
temperature superconducting (HTS) film is investigated numerically. To this end, a defect parameter is defined
for characterizing a crack position and it is calculated along various scanning lines. The results of computations
show that a crack position can be roughly identified by scanning an HTS film in two opposite directions. Hence,
the SPM must be combined with the inductive method to develop a fast high-resolution method for identifying a
crack.
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1. Introduction
As is well known, the critical current density jC is one

of the most important parameters for engineering applica-
tions of high-temperature superconducting (HTS) films. In
this sense, contactless methods have been desired for mea-
suring jC of HTS films [1, 2].

Ohshima et al. [3, 4] proposed the permanent-magnet
method for contactlessly measuring jC of an HTS film.
While bringing a permanent magnet closer to an HTS
film, they measured the electromagnetic force acting on the
film. Consequently, they found that the maximum repul-
sive force FM is roughly proportional to jC. This tendency
implies that jC can be estimated from the measured value
of FM. This is the basic idea of the permanent-magnet
method.

Although the permanent-magnet method can be ap-
plied not only to the jC-measurement [3] but also to the
crack detection [4], it is extremely time-consuming. This
is mainly because FM must be determined at each mea-
surement point. For the purpose of resolving this problem,
Hattori et al. [5] improved the permanent-magnet method.
In the improved method, the magnet is moved along the
film surface and, simultaneously, the electromagnetic force
Fz acting on the film is measured. As a result, the jC-
distribution can be successfully determined from the mea-
sured Fz-distribution. Throughout the present study, the
improved method is called the scanning permanent-magnet
method (SPM).

The authors performed the numerical simulation of
the SPM. As a result, they showed that the SPM can be ap-
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plied to the measurement of the jC-distribution [6]. How-
ever, it is not clear whether or not cracks can be identified
by using the SPM.

The purpose of the present study is to numerically in-
vestigate the applicability of the SPM to the crack identifi-
cation in an HTS film.

2. Governing Equations
2.1 Scanning permanent-magnet method

A schematic view of the SPM is shown in Fig. 1. A
permanent magnet of radius R and height H is placed just
above an HTS film of thickness b so that its symmetry axis
may be vertical to the film surface. While the distance L
between the magnet bottom and the film surface is kept
constant, the permanent magnet is moved along the film
surface at a constant speed. During the movement of the
permanent magnet, an electromagnetic force acting on the

Fig. 1 A schematic view of the SPM.
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film is monitored.
By taking the thickness direction of the film as z-axis

and choosing the centroid of the film as the origin, we use
the Cartesian coordinate system 〈O : ex, ey, ez〉. In terms of
the coordinate system, the symmetry axis of the permanent
magnet is expressed as (x, y) = (xA, yA).

We first assume that the HTS film has a rectangular
cross section Ω of length l and width w. Furthermore, we
assume that it contains a crack whose cross section is a
line segment connecting two points, (xc, yc ± Lc/2), in the
xy plane. Note that the boundary ∂Ω of Ω is composed of
not only the outer boundary C0 but also the inner boundary
C1. Apparently, C1 is the crack surface. In the following, t
and n denote a unit tangent vector and a unit normal vector
on ∂Ω, respectively. Furthermore, x and x′ are position
vectors of two points in the xy plane.

We further assume that the HTS film is scanned with
the permanent magnet in opposite two directions. Specif-
ically, the movements of the magnet are assumed as xA =

±(vt − l/2) ≡ x±(t), where v is a scanning speed.

2.2 Initial-boundary-value problem
As is well known, the electric field E and the shielding

current density j are closely related to each other in an HTS
film. As the relation, the following power law [7–10] is
assumed:

E = E(| j|) [ j/| j|], E( j) = EC( j/ jC)N , (1)

where EC denotes the critical electric field and N is a pos-
itive constant.

Under the thin-plate approximation, there exists a
scalar function T (x, t) such that j = (2/b)[∇ × (Tez)], and
its time evolution is governed by the following integrodif-
ferential equation [10, 11]:

μ0∂t(ŴT ) + ez · (∇ × E) = −∂t〈B · ez〉. (2)

Here, B/μ0 is the magnetic field generated by the perma-
nent magnet. In addition, 〈 〉 denotes an average operator
over the thickness and Ŵ is the operator defined by

ŴT ≡ 2T (x, t)
b

+

�
Ω

Q(|x − x′|) T (x′, t) d2x′,

where Q(r) = −(πb2)−1[r−1 − (r2 + b2)−1/2]. Incidentally,
the method for calculating B/μ0 is described in Appendix.

The initial and boundary conditions to (2) are assumed
as follows:

T = 0 at t = 0, (3)

T = 0 on C0, (4)

∂T
∂s
= 0 on C1, (5)∮

C1

E · t ds = 0, (6)

where s is an arclength along the crack surface C1. Equa-
tions (4) and (5) are derived from the boundary condition

j · n = 0 on ∂Ω, whereas (6) is required for the uniqueness
of the solution [10].

By solving the initial-boundary-value problem of (2),
we can determine the time evolution of the shielding cur-
rent density. Throughout the present study, the geomet-
rical and physical parameters are fixed as follows: R =
1 mm, H = 2 mm, L = 0.5 mm, BF = 0.1 T, v = 2 mm/s,
EC = 1 mV/m, jC = 1.5 MA/cm2, N = 20, b = 1 μm, l
= 30 mm, w = 10 mm, Lc = 2 mm, and (xc, yc) = (3 mm,
0 mm). Here, BF is the magnitude of the magnetic flux
density at (x, y, z) = (xA, yA, b/2) for the case where the
permanent magnet is not moved along the film, and it is
employed as a measure of a permanent-magnet strength.

3. Numerical Simulation
For the purpose of solving the initial-boundary-value

problem of (2), the authors proposed the virtual voltage
method [10, 11]. The basic idea of the method is to apply
a virtual voltage along the crack surface to have the inte-
gral form (6) of Faraday’s law numerically satisfied. The
details of the virtual voltage method are described in [10].

On the basis of the virtual voltage method, a numerical
code was developed for analyzing the time evolution of the
shielding current density in an HTS film with a crack. In
the code, a crack is treated as a set of element boundaries
and, hence, its size Lc strongly depends on the element
division. By executing the code, we can easily evaluate
the electromagnetic force Fz acting on the HTS film. In
this section, we numerically investigate the following two
points:

• How is the SPM affected by a crack?
• Is the SPM applicable to the crack detection?

3.1 Influence of crack on SPM
Let us first investigate the influence of a crack on the

electromagnetic force Fz. To this end, dependences of Fz

on the scanning position xA are numerically determined
not only for an HTS film with a crack but for an HTS
film without a crack. The results of computations are de-
picted in Fig. 2. This figure indicates that, for xA � 0 mm
or 12 mm � xA, two Fz-xA curves overlap with each other.
Otherwise, two curves show quite different behaviors. This
result suggests that the vicinity of the crack is characterized
by the force difference ΔFz ≡ Fwith

z − Fwithout
z . Here, Fwith

z

and Fwithout
z are the electromagnetic forces Fz for an HTS

film with and without a crack, respectively.
The dependence of ΔFz on xA is numerically deter-

mined and is depicted in the inset of Fig. 2. We see from
this inset that, if the inequality |xA− xc| � 3 mm is satisfied,
namely, if the scanning position is located near the crack,
the force difference ΔFz shows a violent change. In addi-
tion, |ΔFz| almost vanishes for xA − xc � −3 mm, whereas
it still remains relatively large for 3 mm � xA − xc � 9 mm.
In other words, the ΔFz-xA curve is neither symmetric nor
antisymmetric with respect to xA = xc.
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Fig. 2 Dependences of the electromagnetic force Fz on the scan-
ning position xA. Here, the movement of of the magnet is
assumed as xA = x+(t) and yA = 0 mm. The inset shows
the dependence of the force difference ΔFz on xA for the
same case.

Fig. 3 The j-distribution in the HTS film without a crack for
the case with xA = x+(t) and yA = 0 mm. Here, the dis-
tribution is obtained at time t satisfying xA = −1 mm. In
Figs. 3 and 4, the shaded circular region indicates the pro-
jection of the permanent magnet onto the film surface.

Next, we investigate the spatial distributions of the
shielding current density j to explain the asymmetric be-
havior of the ΔFz-xA curve. For the HTS film without a
crack, the j-distribution is roughly composed of two cur-
rent vortices: a forward current vortex forms an almost
circular flow pattern, whereas a backward current vortex
shows an oblately ellipsoidal one (see Fig. 3). As the per-
manent magnet is moved along the film surface, these two
vortices shift with their flow patters unchanged. In the fol-
lowing, these two vortices are called a forward vortex and
a backward one.

For the HTS film containing a crack, slightly differ-
ent j-distributions are observed. The crack hardly affects
the j-distribution for xA = −1 mm (xA − xc = −4 mm) (see
Fig. 4 (a)). Furthermore, the crack perturbs only the back-
ward vortex for xA = 7 mm (xA−xc = 4 mm) (see Fig. 4 (c)),
whereas only the forward vortex is remarkably deformed
for xA = 2.6 mm (xA−xc = −0.4 mm) (see Fig. 4 (b)). These
results indicate that, for xA − xc � −3 mm, the crack has
influence on neither the forward vortex nor the backward
one. In addition, the crack disturbs only the backward vor-

Fig. 4 The j-distributions for the case with xA = x+(t) and yA

= 0 mm. Here, the distributions are obtained at time t
satisfying the following conditions: (a) xA = −1 mm, (b)
xA = 2.6 mm, and (c) xA = 7 mm. In these figures, cracks
are denoted by thick line segments.

tex for 3 mm � xA − xc � 9 mm, whereas it deforms only
the forward vortex for |xA − xc| � 3 mm. In this way, an
asymmetric behavior of the ΔFz-xA curve is caused by the
deformation of a forward/backward vortex.

3.2 Crack identification using SPM
As mentioned above, |ΔFz| takes a relatively large

value only when either a forward vortex or a backward one
is disturbed by a crack. The forward vortex is disturbed if
the scanning position xA is located near the crack position
xc. On the other hand, the backward vortex is disturbed un-
less xA−xc exceeds several times the radius R of the perma-
nent magnet. Hence, when |ΔFz| does not vanish due to the
disturbed forward vortex, the scanning position xA can be
regarded as a rough estimation of the crack position xc. In
order to extract the scanning position xA at which only the
forward vortex is disturbed, we define the following defect
parameter: d ≡ sgn(ΔF+z · ΔF−

z )
√|ΔF+z · ΔF−

z |. Here, ΔF+z
and ΔF−

z denote the force difference for xA = x+(t) and that
for xA = x−(t), respectively, and both of them are obtained
by scanning an HTS film in two opposite directions.

The defect parameter d is calculated as functions of
the scanning position xA and is depicted in Fig. 5. As ex-
pected, |d| takes a large value only for xA � xc and it
rapidly decreases with an increase in |xA − xc|. In other
words, a crack can be found in the region where |d| ex-
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Fig. 5 Dependences of the defect parameter d on the scanning
position xA.

ceeds a small positive constant α. On the basis of this
result, we can approximately determine the region Dc in
which a crack is contained. The method for determining
Dc is composed of the following two steps:

1. The shortest single interval I(yA) such that

I(yA) ⊇ {xA : |xA| < l/2, | d(xA, yA) | > α},
is numerically determined. Here, α is a sufficiently
small threshold. Incidentally, for xA ∈ I(yA), a de-
formed forward vortex is always observed.

2. The region Dc is determined by using

Dc = {(xA, yA) : xA ∈ I(yA), |yA| < w/2}.
By means of the above two steps, the region Dc is

numerically determined in the 1st and 2nd quadrants of
the xy-plane. The boundary ∂Dc of the region Dc is de-
picted in Fig. 6. The contours of the defect parameter d
are also shown in this figure. Since the cross section of
the crack is assumed to be a line segment of length 2 mm,
it is completely contained in Dc. In other words, a crack
can be identified by means of the SPM. However, the area
of Dc is relatively large as compared with that of the HTS
film. Hence, the SPM shows only a low resolution in the
crack identification. These results indicate that, although
the SPM is applicable to the crack identification, its res-
olution is not satisfactory enough as compared with that
of the inductive method [1, 2, 11]. On the other hand, the
measurement time of the SPM is much shorter than that of
the inductive method. In this sense, we should combine
both methods to develop a high-performance method for
identifying a crack. In the resulting method, the region Dc

containing a crack is first estimated by using the SPM and,
subsequently, the crack is accurately identified by applying
the inductive method only in Dc.

4. Conclusion
We have numerically investigated the influence of a

crack on the SPM and have also assessed the applicability

Fig. 6 The boundary ∂Dc of the region Dc and contours of the
defect parameter d. Here, α is fixed as α = 2 × 10−2 mN.
In this figure, a crack is denoted by a thick line segment.

of the SPM to the crack identification.
Conclusions obtained in the present study are summa-

rized as follows:

1. The defect parameter d can be determined by scan-
ning an HTS film in two opposite directions. It
changes violently only when the permanent magnet
is moving just near a crack. In this sense, d can be
adopted as a suitable parameter for detecting a crack.

2. The SPM shows a much lower resolution than the in-
ductive method and, hence, it is effective only in the
rough identification of a crack.
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Appendix
In this appendix, we explain the method for calculat-

ing the magnetic field B0/μ0 generated by a cylindrical per-
manent magnet of radius R and height H.

By taking the symmetry axis of the magnet as z-axis
and choosing A(xA, yA, 0) as the origin, we also use the
cylindrical coordinate system 〈A : er, eθ, ez〉. In the fol-
lowing, z and z′ denote position vectors of two points in
the xyz space. Furthermore, the cylindrical coordinates of
z and z′ are denoted by (r, θ, z) and (r′, θ′, z′), respectively.

As is well known, the magnetic vector potential A(z)
generated by the magnetization M(z) is given by

A(z) =
μ0

4π

[�
V

∇′ × M(z′)
|z − z′| d3 z′

+

�
∂V

M(z′) × n(z′)
|z − z′| dS (z′)

]
, (A.1)

where V and ∂V are the permanent magnet and its surface,
respectively, and n(z′) denotes an outward unit normal on
∂V .

In the present study, we assume that the magnetization
M(z) is uniform in V and that it is parallel to the symmetry
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axis of the permanent magnet. In other words, M(z) is
assumed to satisfy M(z) = Mez, where M is a constant.

Under these assumptions, the vector potential A(z)
can be rewritten in the form,

A(z) =
μ0 M
2π

√
R
r

eθ

×
∫ z2

z1

k

[(
2
k2
− 1

)
K(k) − 2E(k)

k2

]
dz′, (A.2)

where z j = b/2 + L + ( j − 1)H ( j = 1, 2). In addition, K(k)
and E(k) are the complete elliptic integrals of the first and
second kinds, respectively, and their parameter k is given
by k2 = 4rR/[(r + R)2 + (z − z′)2].

By substituting (A.2) into B = ∇ × A, we can easily
calculate the magnetic field B/μ0 generated by the perma-
nent magnet.
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