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On Kinetic Resistive Wall Mode Theory with Sheared Rotation∗)
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To study toroidal rotation shear effect on Resistive Wall Mode (RWM) stability, kinetic RWM formulation
is extended to include general equilibrium rotation. By starting from the guiding-center Lagrangian with sheared
rotation, an energy functional of kinetic resonance is generalized. Based on the generalized energy functional, a
new dispersion relation is derived in the large aspect ratio limit. Numerical analysis of the new dispersion relation
indicates that the rotation shear can reduce the growth rates of the RWMs.
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1. Introduction
Advanced tokamaks, which aim to confine high-β

(above no-wall limit) plasmas steadily, need to stabilize
Resistive Wall Modes (RWMs) that limit the achievable
β value. The RWMs originate from unstable external kink
modes, whose growth rates are significantly reduced by the
effect of eddy currents flowing in a resistive wall located
close to a plasma surface. One candidate of the RWM
stabilization method is plasma rotation that brings about
mode-particle resonance, especially resonance between the
RWMs and particles’ drift motion. Kinetic RWM the-
ory [1] including the mode-particle resonance shows that
slow plasma rotation (comparable to particles’ drift fre-
quencies) can stabilize the RWMs.

In the kinetic RWM theory, the stability is determined
by the dispersion relation [2],

−iωτ∗w = −
δW∞

f + δWk

δWb
f + δWk

, (1)

where ω is the eigenvalue, τ∗w is the modified wall diffu-
sion time, δW∞

f is a fluid energy functional (source or sink)

without a wall, δWb
f is a fluid energy functional with ideal

wall location r = b (r is the radial coordinate, and b is the
wall minor radius normalized by the plasma minor radius
a). The energy functional of kinetic resonance is denoted
by δWk. Without kinetic effects, equation (1) reduces to
−iωτ∗w = −δW∞

f /δW
b
f . Since δW∞

f and δWb
f are real, the

"fluid" RWM is unstable for δW∞
f < 0 and δWb

f > 0. As in-
dicated in (1), the imaginary part of δWk works as a damp-
ing effect for the RWMs. Hence, self-consistent computa-
tion of δWk is one of the most important ingredients in the
kinetic RWM theory.

This study is motivated by experimental investigation
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of the RWM dynamics in JT-60U, which has revealed that
rotation shear also plays an important role for RWM sta-
bilization [3]. Standard formulation introduces the equi-
librium rotation by using a Doppler-shifted eigenvalue [2],
hence the rotation shear effect does not appear explicitly. It
should be emphasized that the guiding-center Lagrangian
underlies the formulation of δWk as shown in Ref. [4]. The
previous formulation employs the Lagrangian without ro-
tation. In this study, we reformulate δWk by starting from
the guiding-center Lagrangian with sheared equilibrium
rotation [5] to investigate how the formulation is affected
by including the rotational modification to the Lagrangian.

The remainder of this paper is organized as follows. In
Sec. 2, we derive the perturbed distribution function of the
drift-kinetic equation by starting from the guiding-center
Lagrangian with sheared rotation. In Sec. 3, we derive the
new δWk, which has additional energy functionals com-
pared with the previous theory. Section 4 shows the numer-
ical analysis of the dispersion relation based on new δWk,
which shows that the rotation shear stabilizes the RWM.
This paper is summarized in Sec. 5.

2. A Solution to the Perturbed Drift
Kinetic Equation with Sheared Ro-
tation
As noted in the previous section, the guiding-center

Lagrangian plays a central role in the kinetic RWM theory.
We start from the guiding-center Lagrangian of a particle
with charge Q and mass M including the sheared equilib-
rium rotation D(R) (R is the guiding-center position) [5],

L = L(R, v‖, y, α, Ṙ, v̇‖, ẏ, α̇, t)
=

[
QA(R, t) + Mv‖b̂(R, t) + M D

]
· Ṙ

+
y

Ωc(R, t)
α̇ − Et, (2)

where v‖ is the parallel component of particle velocity in
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the moving frame with D, y = μB is the perpendicular en-
ergy in the moving frame [μ = Mv2⊥/(2B) is the magnetic
moment with the perpendicular component of particle ve-
locity in the moving frame v⊥ and the magnetic field am-
plitude B], α is the gyro-angle, the dot indicates the total
derivative by time t, A is the vector potential that gives the
magnetic field as B = ∇ × A, b̂ = B/B is the unit normal
vector parallel to the magnetic field, Ωc = QB/M is the cy-
clotron frequency, and Et = M/2|v‖b̂ + D|2 + y + QΦ(R, t)
is the total energy with the scalar potential Φ that gives the
electric field as E = −∂t A − ∇Φ.

Variations of (2) by independent variables yield the
Euler-Lagrange equations as the parallel motion U :=
v‖ +D‖ = b̂ · Ṙ where D‖ = D · b̂ is the parallel component
of the equilibrium rotation, the gyro-motion α̇ = Ωc, con-
servation of the magnetic moment μ̇ = 0, and the equation
of guiding-center motion

Ṙ = Ub̂ +
b̂

MΩc
× {−QE + μ∇B

+M [(C · ∇) C + ∂tC]} , (3)

where C = v‖b̂ + D = Ub̂ + D⊥ is the generalized veloc-
ity vector with the perpendicular component of the equi-
librium rotation D⊥ = D − D‖b̂. We have assumed the
perpendicular component of the equilibrium rotation can
be approximated by E×B rotation as D⊥ ∼ VE = E× b̂/B.

To investigate the perturbation due to the kinetic re-
sponse, we employ the collision-less drift-kinetic equation,

∂t f + Ṙ · ∇ f + v̇‖∂v‖ f + ẏ∂y f = 0, (4)

where f = f (R, v‖, y, t) is the distribution function in the
lowest order of ε where ε is the ratio of gyro-radius and
scale length. By linearizing (4) and integrating by time,
we obtain the formal solution to the linearized drift-kinetic
equation as

f (1)=P(1)
φ ∂PφF+QΦ(1)∂Et F − μB(1)

B
∂μF + h(1), (5)

where the superscript (1) indicates the perturbed part,
Pφ = ∂φ̇L is the canonical angular momentum with the
toroidal angle φ, and F = F(Pφ, Et, μ) is the equilibrium
distribution function. The non-adiabatic part h(1) satisfies
dh(1)/dt = ∂Et F∂tL(1) − ∂PφF∂φL(1).

The linearized guiding-center Lagrangian is calcu-
lated as

L(1) = QA(1) · Ṙ − μB(1) − QΦ(1). (6)

We relate the linearized electromagnetic fields in (6) to the
ideal magnetohydrodynamic (MHD) perturbation. Even
with the equilibrium rotation, the perturbation of the mag-
netic field is written as B(1) = ∇ × (ξ⊥ × B). Then the
perturbation of the vector potential reads A(1) = ξ⊥ × B
with an appropriate gauge condition. Linearization of the
ideal Ohm’s law leads to Φ(1) = −ξ · ∇Φ. Using the above
equations, equation (6) can be written as

L(1) = −Mξ⊥ · [(C · ∇) C]

+ μB
(∇ · ξ⊥ + κ · ξ⊥)

, (7)

where κ = (b̂ ·∇)b̂ is the magnetic curvature. Setting D = 0
(i.e, C = v‖b̂) and VE = O(ε) in (3) and (7) recovers the
standard results [4].

We introduce the coordinate system r-θ-φ, where θ is
the well-defined poloidal angle. The guiding-center mo-
tion reads ṙ = Ṙ · ∇r, θ̇ = Ṙ · ∇θ, and φ̇ = Ṙ · ∇φ. Bounce
time is defined as τb =

∮
dτ =

∮
ṙ−1dr =

∮
θ̇−1dθ, where∮

refers to the integral along the closed orbit. Bounce-
averaging is defined as 〈X〉 = τ−1

b

∮
X(τ)dτ. The perturbed

guiding-center Lagrangian can be treated as a function of t
as

L(1)(t) = L̂(1)(r(t), θ(t))e−iωte−inφ(t), (8)

where n is the toroidal mode number. Using (8), a standard
integration technique along the unperturbed orbit leads to

h(1) =
∑

l

(ω − nω∗)
(
∂Et F

)
Yl

× e−i[ω+nωd+(l+α̃nq)ωb]t

ω + nωd + (l + α̃nq)ωb
, (9)

where l is the poloidal harmonic number of bounce mo-
tion, ω∗ = ∂Et F/∂PφF, Yl = 〈L̃(1)ei(l+α̃nq)ωbt〉 is the bounce-
averaged bounce harmonics of the oscillating part of the
perturbed Lagrangian L̃(1) = L(1)ei(ω+ωd)t where ωd = 〈Ṙ ·
∇(φ − qθ)〉 is the drift frequency and q is the safety factor,
α̃ = 0 (1) for trapped (passing) particles, and ωb = 2π/τb

is the bounce frequency.

3. Reformulating the Energy Func-
tional of Kinetic Resonance
To compute the energy functional of kinetic reso-

nance, we need to calculate the perturbed stress tensor.
Since v‖ and v⊥ are defined in the frame moving with D,
the stress tensor in the rest frame reads

P =
∫

dv f

[
MCC +

Mv2⊥
2

(
I − b̂b̂

)]
, (10)

where I is the identity tensor. Linearizing (10), we get

P(1) = P(1)
‖ + p(1)

⊥
(
I − b̂b̂

)
, (11)

where P(1)
‖ = M

∫
dv f (1)CC is the perturbed parallel pres-

sure tensor, and p(1)
⊥ =

∫
dv(Mv2⊥/2) f (1) is the perturbed

perpendicular pressure. In derivation of (11), we have as-
sumed (p‖ − p⊥)/B2 = 0 where p‖ =

∫
dvM(v‖ + D‖)2F is

the equilibrium parallel pressure and p⊥ =
∫

dv(Mv2⊥/2)F
is the equilibrium perpendicular pressure. This condition
can be satisfied for isotropic thermal particles.

Computing (1/2)
∫

dxξ∗ · (∇ · P(1)) with (5), (9), and
(11) (the asterisk indicates the complex conjugate), and ne-
glecting ξ‖ and O(ε) terms, we obtain

1
2

∫
dxξ∗ · (∇ · P(1)) = δWf p + δWk, (12)

where δWf p = −(1/2)
∫

dxdvL(1)∗[ f (1) − h(1)] is the adia-
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batic response, while

δWk =
∑

l

1
2

∫
dxdv (ω − nω∗)

(−∂Et F
)

× |Yl|2
ω + nωd + (l + α̃nq)ωb

, (13)

is the energy functional of kinetic resonance. We note that
the adiabatic response δWf p in (12) reduces to the standard
fluid pressure response in the zero-banana-width limit [4].
In what follows, we assume the zero-banana-width limit,
which enable us to substitute the fluid energy functionals
for the adiabatic response.

When the Maxwellian equilibrium distribution func-
tion is employed, i.e., F = N(r)[M/(2πT (r))]3/2 exp(−Et/

T (r)) where N(r) is the number density and T (r) is the tem-
perature, equation (13) reduces to

δWk =
∑

l

1
2

∫
dxdv

(
− ∂F
∂Et

)
Ql

×
∣∣∣∣〈ei(l+α̃nq)ωbtL(1)

〉∣∣∣∣2 . (14)

The mode-particle resonance factor Ql reads

Ql =
ω + nω∗N + (Et/T − 3/2) nω∗T

ω + (l + α̃nq)ωb + nωd
, (15)

where ω∗N and ω∗T are the diamagnetic drift frequencies
due to the density and temperature gradients. If we add
the Doppler-shift effect by putting ω → ω + nωE where
ωE is the E × B frequency, equations (14) and (15) are
formally identical to the previous ones (e.g., [6]). How-
ever, our expression has some difference. Firstly, the per-
turbed guiding-center Lagrangian in (14) is different from
the standard one [see (7)]. Secondly, the resonant operator
contains the total energy (not kinetic energy), and we have
ωE only in the denominator through ωd. Especially, as
shown in the next section, the generalization of L(1) gives
the additional kinetic energy functionals.

4. Numerical Analysis of the Disper-
sion Relation
A new aspect of our theory is contained in the "gener-

alized" curvature,

(C · ∇C) = U2κ + U f 1 + f 0, (16)

where f 1 = (b̂ · ∇)D⊥ + (D⊥ · ∇)b̂ is the sum of the
Coriolis acceleration and the parallel acceleration, and
f 0 = (D⊥ · ∇)D⊥ indicates the centrifugal acceleration.
In (16), we have omitted the terms parallel to b̂ since
they vanish in (7). Considering the large aspect ra-
tio plasmas, we obtain ξ⊥ · f 1 =−2ξrdΦ/dr/(qR0B0) and
ξ⊥ · f 0 =−ξr(dΦ/dr)2/(rB2

0) where R0 is the major radius
and B0 is the magnetic field amplitude at the magnetic
axis. Also we obtain the analytic formulas for bounce and
drift frequencies as ωb = (vth/R0)(σσ1/q)ÊkW and ωd =

ωE + (ρL/r)(vth/R0)qÊkD where vth is the thermal speed, σ

is the sign of U, σ1 = 1 (σ/2) for passing (trapped) parti-
cles, Êk = Ek/T is the normalized kinetic energy with Ek =

Et − MD2⊥/2 − QΦ, and ρL = vth/Ωc is the Larmor radius.
The non-dimensional frequencies W and D can be found
in Ref. [6], which depends on εr = r/R0 and the pitch an-
gle variable λ = μB0/Ek. The diamagnetic frequencies
due to the density and temperature gradients are ω∗N =

(2rB0dr/dψ)(ρL/r)(vth/R0)(1/4εr)[−(r/N)dN/dr] and ω∗T
= (2rB0dr/dψ)(ρL/r)(vth/R0)(1/4εr)[−(r/T )dT/dr].

We focus on the trapped ions with a dominant bounce
harmonic l = 0, i.e., l + α̃nq = 0. Also we assume the
eigenfunction satisfies the condition ∇ · ξ⊥ = −2κ · ξ⊥.
Then (14) and (15) yield three energy functionals, δWk =

δWk1 + δWk2 + δWk3. Here

δWk1 = 2π3/2
∫ a

0
drX(r)εrP |〈ξR〉|2

×
∫ 1/(1−εr)

1/(1+εr)
dλ

(2 − λ)2

W
I5/2(r, λ), (17)

is the energy functional similar to the previous δWk where
P = NT is the pressure, X(r) = exp(−(MV2

E/2 + QΦ)/T )
and

Iα(r, λ) =
∫ ∞

0
dÊkÊα

k e−Êk Q0. (18)

We remark that there are two additional energy functionals
due to the generalized Lagrangian (7) with (16) as

δWk2 = 2π3/2
∫ a

0
drX(r)εrP

MR0

T

× (〈ξR〉∗ 〈
ξ⊥ · f 0

〉
+

〈
ξ⊥ · f 0

〉∗ 〈ξR〉) (19)

×
∫ 1/(1−εr)

1/(1+εr)
dλ

(2 − λ)
W

I3/2(r, λ),

δWk3 = 2π3/2
∫ a

0
drX(r)εrP

M2R2
0

T 2

∣∣∣〈ξ⊥ · f 0
〉∣∣∣2

×
∫ 1/(1−εr)

1/(1+εr)
dλ

1
W

I1/2(r, λ).

The energy integration (18) can yield the imaginary part
through the pole of Q0. We emphasize that the standard
drift-kinetic RWM theory overlooked these two additional
energy functionals since the guiding-center Lagrangian is
described without rotation.

In what follows, we assume that the rotation is slow
but finite with the ordering |ωd | � |ω+nωE |, which is valid
for thermal particles. In this frequency region, the Landau
resonance damping, which is significant for very low rota-
tion in the range |ω + nωE | � |ωd |, is not essential [6]. In
this case, from (17) and (19) we obtain

δWk1=2π3/2
∫ a

0
drX(r)εrP |〈ξR〉|2 G5/2(r),

δWk2=2π3/2
∫ a

0
drX(r)εrP

MR0

T
(20)

× (〈ξR〉∗ 〈
ξ⊥ · f 0

〉
+

〈
ξ⊥ · f 0

〉∗ 〈ξR〉)G3/2(r),

δWk3=2π3/2
∫ a

0
drX(r)εrP

M2R2
0

T 2
×∣∣∣〈ξ⊥· f 0

〉∣∣∣2G1/2(r),
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Fig. 1 (a) A fixed safety factor profile (black) and various ro-
tation profiles (red). (b) Radial profiles of G factors for
various rotation profiles.

where Gα(r) =
∫

dλ(2 − λ)α−1/2Iα/W. Since Gα has the
analytical expression with the aid of the Gamma function,
we can easily compute the imaginary part of the G factor
with the typical fluid RWM growth rate ω = iγ f . Fig-
ure 1 (a) shows a fixed safety factor profile and various ro-
tation profiles, and Fig. 1 (b) indicates the radial profiles of
imaginary parts of G factors for various rotation profiles.
The solid, dotted, and broken lines in Fig. 1 (b) correspond
to the rotation profiles in Fig. 1 (a). From Fig. 1 (b), the
imaginary parts of the new energy functionals cannot be
neglected compared with the previous one. Hence the new
energy functionals are expected to work as a damping ef-
fect for RWMs.

For full computation of δWk, the eigenfunction of
external kink modes is required. We employ the cylin-
drical model with flat safety factor and density profiles
and a parabolic pressure profile. In this case, we can
use the analytic expression of the kink eigenfunction as
ξ⊥ = am(r/a)m−1(r̂ + iθ̂)eimθ/F0 where m is the poloidal
mode number and F0 = (m − nq0)a/(R0q0). Then 〈ξR〉 and
〈ξr〉 in (20) can be analytically calculated.

We investigate the dispersion relation (1). In cylin-
drical theory, we obtain τ∗w = τw[1 − (b/a)−2 m]/m where
τw = μ0bd/η is the wall diffusion time (μ0 is the vacuum
permeability, d is the wall width, and η is the wall vol-
ume resistivity). Also, the fluid energy functionals δWf

have analytic formulas [7]. As shown in Fig. 1 (a), to study
the rotation shear effect on RWM stability, we have var-
ied the rotation profiles at r/a = 0.8 where the G factor
and the eigenfunction become large. The parameters are
q0 = 2.2, m/n = 3/1, and a/R0 = 1/3. Figure 2 shows
the RWM growth rates normalized by 1/τw as functions
of wall location for various δWk. The green lines indicate
δWk = δWk1 corresponding to the previous formulation,
the red lines denote δWk = δWk1 + δWk2 + δWk3 as the new
self-consistent formulation, and the blue lines show the
fluid RWM with δWk = 0. The solid, dotted, and broken
lines correspond to the rotation profiles in Fig. 1 (a). As
clearly shown in Fig. 2, in the new formulation, the RWM
growth rates are significantly decreased by increasing the
rotation shear, while the results by the previous theory is
not so sensitive to the rotation shear.

Fig. 2 RWM growth rates normalized by the inverse of the wall
diffusion time as functions of wall location.

5. Summary
In summary, we have revisited the formulation of the

energy functional of kinetic resonance δWk, which plays an
important role in the RWM dispersion relation. Previous
formulations use the guiding-center Lagrangian without
rotation. By starting from the guiding-center Lagrangian
with sheared rotation, we have shown that the energy func-
tional of kinetic resonance has two additional functionals
originating from the coupling of magnetic curvature and
the centrifugal acceleration. We have shown that the new
δWk has a significant imaginary part, which is related to the
kinetic damping of RWMs. Also, by using cylindrical the-
ory, we have numerically shown that the new formulation
indicates the tendency that the rotation shear stabilizes the
RWM, which is qualitatively consistent with experiment
results. As a final remark, we note that for quantitative
analysis by the present theory, we need to implement the
present formulation in the computation in tokamak geom-
etry, such as MINERVA/RWMaC code [8]. The extension
to the tokamak geometry will be reported elsewhere.
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