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The life time of trapped ion granulations (trapped ions correlated by resonance) in sheared flows is calculated.
The dynamics of trapped ion granulations, in the presence of sheared flows, is formulated in terms of two point
correlation function of phase space density fluctuations. The evolution equation is closed by a simplified closure
calculation of the triplet term. Based on the closed equation, the life time of the relative dispersion of trapped
ion granulations is calculated. The result shows that i.) a relevant time scale enters via a hybrid of decorrelation
and shearing, (Δωcv′2y )1/3 and ii.) small scale singularities in the absence of collisional dissipation enters through
logarithmic divergence.
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1. Introduction
Turbulent mixing is an important issue for magnetic

fusion community for predictive modeling of anomalous
transport (Fig. 1). At the simplest level, the idea of turbu-
lent mixing, or so-called the mixing length theory [1], is
applied for estimating saturated level of turbulence. More
elaborated theory for turbulent mixing modeling was de-
veloped and applied for estimating the anomalous level of
transport by ion temperature gradient (ITG) driven turbu-
lence [2], etc. More recently, the effect of sheared flows
on the turbulent mixing has been elucidated [3–5]. In the
case with sheared flows, while turbulent E×B eddys mixes
background physical quantities, they are sheared apart by
flows. The combination of the two processes results in
the hybrid mixing rate (k2

0D⊥v′2y )1/3, where k2
0D⊥ is a typ-

ical mixing rate due to turbulent E × B diffusion and v′y
is flow shear. The turbulence and associated transport are
suppressed when (k2

0D⊥v′2y )1/3 > k2
0D⊥, in which case tur-

bulent E ×B eddys are sheared apart before causing appre-
ciable transport.

Mixing by plasma turbulence can be also formulated
in phase space [6–8]. The mixing process by phase space
‘eddys’, called granulations (alternatively put, granulations
or clumps are macro-particles constituting of resonant par-
ticles correlated via resonance), is pioneered by Dupree
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Fig. 1 A schematic view of this study. The idea of turbulent
E × B mixing was applied to predict saturated turbulent
amplitude [1] or anomalous transport, say by ITG [2].
The concept has been developed to include shear flow ef-
fect in [3, 4]. On the other hand, the E × B mixing is
formulated at the level of phase space by Biglari [10],
as shown in the horizontal direction in the cartoon. In
this study, we are aiming at developing the E × B mix-
ing with energy dependent toroidal precession to include
shear flow effect.

[6]. In that work, Dupree calculated the rate of turbu-
lent mixing in phase space for unmagnetized, 1d plasmas
(Vlasov plasmas). The role of phase space density gran-
ulations in relaxation was also discussed in the context of
fusion study [9, 10]. In particular, in [10], the mixing rate
by trapped ion granulations (resonantly correlated trapped
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ions) are calculated. The calculated mixing rate was ap-
plied to formulate nonlinear instability driven by trapped
ion granulations and to calculate the level of anomalous
transport. However, these were before the role of sheared
flows on plasma turbulence were appreciated. Thus these
calculations were not formulated in the presence of sheared
flows. How sheared flows modifies the mixing by granu-
lations is an important question, since anomalous transport
by granulations may be controlled via shear flows.

In this paper, we discuss how the turbulent mixing
with granulations is affected by sheared flows. As a typ-
ical example of plasma turbulence with granulations, we
consider trapped ion resonance driven turbulence. The dy-
namics of trapped ion granulations is formulated by the
evolution of two point phase space density correlation. The
life time (mixing rate) of trapped ion granulations are de-
termined by several processes, such as i.) the difference in
energy dependent ∇B drift, ii.) the turbulent E × B scatter-
ing, and iii.) shearing by flows. In particular, the second
item (E × B mixing) appears as a triplet term in the evo-
lution equation for phase space density correlation. This
term is renormalized to give a turbulent E×B diffusion term
via a simple closure calculation [6,7]. The closed equation
is used to calculate a relevant time scales for the mixing by
granulations with sheared flows. The result indicates that
the mixing by granulations are modified in the presence of
shear flows, in such a way that the relevant mixing rate en-
ters via the hybrid of E × B mixing rate and flow shear v′y.
The dependence on velocity space variables are retained
through logarithmic factor in the mixing time. The result
diverges logarithmically as the two points in phase space
are approached, which is a typical behavior of turbulence
mixing by granulations.

The remaining of the paper is organized as follows.
In section 2, we introduce a model used in the paper and
derive the evolution equation for trapped ion granulations.
A simple calculation based on quasi-linear like theory is
presented. In section 3, we calculate a relevant time scale
for the mixing by granulations with sheared flows. Section
4 is conclusion.

2. Model Equation and Triplet Clo-
sure
Here, we use a model developed in [11] for trapped

ion resonance driven turbulence:

∂t fi + vDiĒ∂y + vE×B · ∇ fi = 0. (1)

Here vDiĒ is the energy dependent drift velocity and Ē ≡
E/Ti. Energy is not scattered in this model due to the
bounce average, dE/dt = v‖E‖ → 0. Electrons are as-
sumed to be dissipative, and thus treated as laminar. Ion
density and electron density are connected via the Poisson
equation,

δne

n0
=

∫
d3v fi + ρ

2∇2
⊥

eφ
Te
. (2)

Here ρ2 = ρ2
s(1 + 1.6q2/

√
ε0) includes both classical and

neo-classical polarization effects [12]. q is the safety fac-
tor and ε0 is the inverse aspect ratio. Arguably, the model
here may be the minimal model that captures the drift
wave dynamics with the velocity space resonance. Due
to the 1d structure of the resonance and the weakly dis-
persive nature of the long wave length modes as treated
in this model, strong resonance such that the Kubo num-
ber K ≡ ṽτc/Δc ∼ τ−1

circ,E×B(dω/dkθ − ω/kθ)−1Δk−1
θ � 1 is

expected to develop even for a broad spectrum Δkθ ∼ kθ.
Thus the formation of phase space structures, such as phase
space density granulations, is very likely in this model.

The dynamics of phase space density fluctuations is
characterized by the evolution of two point phase space
density correlation function:

∂t〈δ f (1)δ f (2)〉 + T (1, 2) = P(1, 2). (3)

Here the average is over the center of mass coordinate,
x+ ≡ (x1 + x2)/2. The righthand side represents the source
for turbulent fluctuation, P(1, 2) ∝ −〈ṽxδ f 〉〈 f 〉′. Specific
form for this term is calculated in [10,13,14] and we focus
on the lefthand side in the rest of the paper. The lefthand
side includes the term that determines the lifetime of the
relative dispersion:

T (1, 2) = vDiE1
∂

∂y1
〈δ f (1)δ f (2)〉

+ v′yx1
∂

∂y1
〈δ f (1)δ f (2)〉

+ ∇1 · 〈ṽ(1)δ f (1)δ f (2)〉 + (1 ↔ 2). (4)

Here (1 ↔ 2) denotes the terms with the arguments 1 and
2 exchanged. Note that this term includes the triplet term
due to E × B mixing. Thus we need a closure calculation.
The triplet term can be closed by employing a simple clo-
sure modeling based on quasilinear like calculation. In this
approach, the triplet term is approximated as:

ṽ(1)δ f (1)δ f (2) � ṽ(1)(δ f (1)δ f (2))c. (5)

Here (δ f (1)δ f (2))c is the fluctuating part that is phase co-
herent to ṽE×B:

(δ f (1)δ f (2))c
kω � −ĝkω(1)

× (vE×B)kωeik·x1 · ∇1〈δ f (1)δ f (2)〉 + (1 ↔ 2), (6)

and ĝkω(1) = (−iω + iωDiĒ1 − kyv′y∂/∂kx + 1/τc)−1 is the
propagator. Substituting the phase coherent response, the
triplet term then becomes:

〈ṽ(1)δ f (1)δ f (2)〉 � − D11 · ∇1〈δ f (1)δ f (2)〉
− D12 · ∇2〈δ f (1)δ f (2)〉. (7)

Here the diffusivity is given by D11 ≡∑
kω ĝkω〈ṽE×BṽE×B〉kω and D12 ≡∑
kω ĝkω〈ṽE×BṽE×B〉kωe−ik·x− . Collecting the re-

sult and writing the answer in terms of relative
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Fig. 2 A schematic view for the processes that determine the life
time of trapped ion granulations. Trapped ion granula-
tions are decorrelated due to several processes, including
the difference in the precession velocity (right), turbulent
E × B mixing (center), shearing due to flows (left). The
effective life time is determined by the combination of
these processes.

coordinates(x− ≡ x1 − x2, E− ≡ E1 − E2), we finally have:

T (1, 2) =vDiĒ−
∂

∂y−
〈δ f (1)δ f (2)〉

+ v′yx−
∂

∂y−
〈δ f (1)δ f (2)〉

− ∇− · D− · ∇−〈δ f (1)δ f (2)〉. (8)

Here D− ≡ D11 + D22 − D12 − D21. For small separations
k0·x− < 1, D− � D⊥(k0·x−)2 where D⊥ is the typical E×B
mixing diffusivity and k0 is the typical scale for turbulent
fluctuations. We are interested in this limit as the condition
k0 · x− < 1 is required for particles to be correlated. Each
process that determines T (1, 2) is depicted in Fig. 2. The
first term is the relative dispersion due to the difference in
the precession speeds. The second term is due to shearing.
The last term, which is a product of the closure calculation,
represents the nonlinear E × B mixing.

3. Life Time of Trapped Ion Granula-
tions in Sheared Flows
Given the closed equation as derived above, here we

extract a life time of phase space density correlations. This
may be done by considering the evolution of a probability
density function F(x−, y−, E−) for relative separations and
by extracting the evolution of moments which are defined
as 〈〈...〉〉 = ∫ dx−dy−dE−(...)F/

∫
dx−dy−dE−F. Here F

evolves in time as:

∂tF + vDiĒ−
∂

∂y−
F + v′yx−

∂

∂y−
F −∇− · D− ·∇−F = 0.

(9)

To further simplify the analysis, we approximate the diffu-
sion term as

∇− · D− · ∇− � ∂

∂x−
k2

0D⊥

⎛⎜⎜⎜⎜⎝ x2−
k2

0Δr2
c

+ y2
−

⎞⎟⎟⎟⎟⎠ ∂
∂x−

+
∂

∂y−
k2

0D⊥

⎛⎜⎜⎜⎜⎝ x2−
k2

0Δr2
c

+ y2
−

⎞⎟⎟⎟⎟⎠ ∂
∂y−
. (10)

Thus we only retain the diagonal terms in the diffusion ma-
trix. Since typical scales in x and y can be anisotropic due
to sheared flows, we retained the difference in the scales in
x and y, which are given by Δrc and k0 respectively. Note
that a similar approximation is used in [3]. Using these
relations, relevant moments are obtained as:

∂t〈〈x2
−〉〉 = 6

D⊥
Δr2

c
〈〈x2

−〉〉 + 2D⊥k2
0〈〈y2

−〉〉, (11)

∂t〈〈y2
−〉〉 = 2vDi〈〈Ē−y−〉〉 + 2v′y〈〈x−y−〉〉

+ 2
D⊥
Δr2

c
〈〈x2

−〉〉 + 6D⊥k2
0〈〈y2

−〉〉, (12)

∂t〈〈x−y−〉〉 = vDi〈〈Ē−x−〉〉 + v′y〈〈x2
−〉〉

+ 2
D⊥
Δr2

c
〈〈x−y−〉〉 + 2D⊥k2

0〈〈x−y−〉〉,
(13)

∂t〈〈Ē−y−〉〉 = vDi〈〈Ē2
−〉〉 + v′y〈〈Ē−x−〉〉

+ 2D⊥k2
0〈〈Ē−y−〉〉, (14)

∂t〈〈Ē−x−〉〉 = 2
D⊥
Δr2

c
〈〈Ē−x−〉〉. (15)

The set of equations is solved in strong shear limit,
v′y � D⊥k2

0,D⊥/Δr2
c , k0vDi. In this limit, time asymptoti-

cally relevant solution can be obtained as

〈〈y−〉〉 → eσt

3

⎛⎜⎜⎜⎜⎝y2
− +

σ

Δωc
x2
− +
√

2σ
Δωc

x−y−

+
2v2

Di

σ2
Ē2
− + 4

vDi

σ

√
σ

2Δωc
Ē−x−

+
2vDi

σ
Ē−y−

)
, (16)

where Δωc ≡ 2k2
0D⊥ is the turbulent decorrelation rate and

σ ≡ (2Δωcv′2y )1/3 is the hybrid frequency of the decorrela-
tion rate and flow shear. By noting that the life time of the
correlation can be obtained by setting 〈〈y(t = τcl)〉〉 ∼ k−2

0
(see Fig. 3), the life time of trapped ion granulation can be
obtained as

στcl = ln

⎛⎜⎜⎜⎜⎝k
2
0y2−
3
+

k2
0σ

3Δωc
x2
− +

k2
0

3

√
2σ
Δωc

x−y−

+
2v2

Dik
2
0

3σ2
Ē2
− +

4vDik2
0

3σ

√
σ

2Δωc
Ē−x−

+
2vDik2

0

3σ
Ē−y−

⎞⎟⎟⎟⎟⎠
−1

. (17)

Eq. 17 is the principal result of the paper. It describes
the life time of trapped ion granulations in sheared flows.
Physically, it describes how fast the correlations are mixed
through the processes as depicted in Fig. 2. As in the case
of the turbulent E × B mixing in sheared flows, the rele-
vant time scale is given by the hybrid of the decorrelation
rate and flow shears, σ ∼ (Δωcv′2y )1/3. It is also charac-
terized by the logarithmic divergence in the limit of small
separations, which is the typical behavior of the life time
of granulations.
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Fig. 3 A cartoon for illustrating the definition of clump life time.
When two correlated resonant particles separate to the
typical scale of turbulent fluctuation, they are decorre-
lated. The duration of this process determines the effec-
tive life time of the correlation.

4. Conclusion
In this paper, we discussed an extension of formulat-

ing the life time of phase space granulations [6] in turbu-
lent plasmas, to include the effect of sheared flows (Fig. 1)
[3, 4]. In particular, we focused on trapped ion granula-
tions, a typical example of phase space turbulence which
can be important for magnetic fusion community. The
life time of trapped ion granulations, formulated first by
Biglari [10] for trapped ion resonance driven turbulence
without sheared flows, is now extended to include sheared
flows. The life time is determined by the combination of
several processes, including the difference in the preces-
sion velocity, the E × B turbulent mixing, and shearing by
flows (Fig. 2). An analytic expression for the life time is
given by Eq. 17. The expression is characterized by; i.)
relevant time scale σ = (2Δωcv′2y )1/3, which is the hybrid
of the decorrelation due to turbulent E×B mixing and flow
shears, and ii.) the logarithmic dependence on the separa-
tion of two points in phase space. As a caveat, our calcu-
lation does not include the effect of collisions, which do

impact the lifetime of phase space structures, even for rel-
atively small, but finite collision frequencies [15].

5. Acknowledgement
We acknowledge stimulating discussions with partici-

pants in Festival de theorie 2013. This work was supported
by Grant-in-Aid for Scientific Research of JSPF of Japan
(21224014,25887041), CMTFO, U.S. Department of En-
ergy Grants No. DE-FG02-04ER54738, the WCI project
2009-001 of MEST of Korea.

[1] B.B. Kadomtsev, Plasma Turbulence (Academic, New
York, 1965).

[2] G.S. Lee and P.H. Diamond, Phys. Fluids 29, 3291 (1986).
[3] H. Biglari, P.H. Diamond and P.W. Terry, Phys. Fluids B 2,

1 (1990).
[4] T.S. Hahm and K. Burrell, Phys. Plasmas 2, 1648 (1995).
[5] Ö.D. Gürcan, Phys. Rev. Lett. 109, 155006 (2012).
[6] T.H. Dupree, Phys. Fluids 15, 334 (1972).
[7] P.H. Diamond, S.-I. Itoh and K. Itoh, Modern Plasma

Physics Vol.1: Physical Kinetics of Turbulent Plasmas
(Cambridge University Press, Cambridge, 2011).

[8] M. Lesur and P.H. Diamond, Phys. Rev. E 87, 031101(R)
(2013).

[9] P.H. Diamond, P.L. Similon, P.W. Terry, C.W. Horton,
S.M. Mahajan, J.D. Meiss, M.N. Rosenbluth, K. Swartz, T.
Tajima and R.D. Hazeltine, Plasma Physics and Controlled
Nuclear Fusion Research 1982 (IAEA, Vienna, 1983).

[10] H. Biglari, P.H. Diamond and P.W. Terry, Phys. Fluids 31,
2644 (1988).

[11] B.B. Kadomtsev and P.O. Pogutse, Reviews of Plasma
Physics, edited by M. A. Leontovich (Consultants Bureau,
New York, 1970) Vol. 5.

[12] Lu Wang and T.S. Hahm, Phys. Plasmas 16, 062309
(2009).

[13] Y. Kosuga and P.H. Diamond, Plasma Fusion Res. 5, S2051
(2010).

[14] Y. Kosuga and P.H. Diamond, Phys. Plasmas 18, 122305
(2011).

[15] M. Lesur, Phys. Plasmas 20, 055905 (2013).

3403018-4


