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To speed up electromagnetic wave propagation simulations using the meshless time-domain
method (MTDM) in complex shaped domains, this paper presents a strategy for embedding the modified ra-
dial point interpolation method (MRPIM)-based shape functions to MTDM, while maintaining the stability of
the simulations. Numerical experiments show that, by using the strategy with appropriate parameters, the sta-
bility of the simulations using MTDM with MRPIM-based shape functions (MRPIM-MTDM) is considerably
improved. In addition, the approach of the amplification/damping rate to convergence in MRPIM-MTDM is al-
most the same as that in the conventional MTDM. Furthermore, the total computation time of MRPIM-MTDM
is less than that of the conventional MTDM.
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1. Introduction
In a large helical device (LHD), an electron cyclotron

heating (ECH) system is used for plasma heating; electri-
cal power generated by the gyrotron system is transmitted
to the LHD via a long corrugated waveguide. However, the
shape of the waveguide curvature and the theoretical trans-
mission gain of electromagnetic wave propagation are not
clear [1].

Finite-difference time-domain method (FDTD) has
generally been applied to electromagnetic wave propaga-
tion simulations. FDTD can directly provide solutions of
Maxwell equations. However, to apply FDTD in electro-
magnetic wave propagation simulations, the numerical do-
main must be divided into rectangular meshes, and it is
difficult for an arbitrary-shaped domain to be accurately
represented by rectangular meshes.

On the other hand, a meshless method based on the
radial point interpolation method (RPIM) [3] has recently
been applied to electromagnetic wave propagation simu-
lations [2]. We refer to this as a meshless time-domain
method (MTDM). MTDM does not require finite ele-
ments or meshes of a geometric structure, i.e., the node
alignment of MTDM is more flexible than that of FDTD.
Hence, MTDM can easily be applied in electromagnetic
wave propagation simulations of complex shaped domains.
However, the computational cost of MTDM tends to be
larger than that of FDTD. This is because, in MTDM,
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shape functions based on RPIM are usually employed; i.e.,
before starting the simulations, the ith shape function cor-
responding to the ith node has to be determined by solv-
ing linear systems constructed by using neighbor nodes
(i = 1, 2, . . . ,N), where N is the number of nodes. To apply
MTDM to large-scale simulations, acceleration of MTDM
may be indispensable.

Recently, a modified RPIM (MRPIM) [4] has been
proposed. In MRPIM, the algorithm for determining the
shape functions is rebuilt. By using MRPIM-based shape
functions in MTDM, the computation efficiency of MTDM
may be improved. However, if MRPIM-based shape func-
tions are simply embedded in MTDM, the simulation using
MTDM may be unstable [1].

The purpose of the present study is to speed up elec-
tromagnetic wave propagation simulations using MTDM
in complex shaped domains. To this end, MRPIM is em-
ployed for generating shape functions for MTDM. In addi-
tion, to maintain the stability of simulations using MTDM,
we present a strategy for embedding MRPIM-based shape
functions in MTDM.

2. Meshless Time-Domain Method
To simulate electromagnetic wave propagation, we

consider Maxwell equations in case of the two-
dimensional (2D) TM mode described by

ε
∂Ez

∂t
= −σEz +

∂Hy

∂x
− ∂Hx

∂y
, (1)
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μ
∂Hx

∂t
= −∂Ez

∂y
, (2)

μ
∂Hy

∂t
=
∂Ez

∂x
, (3)

where Ez denotes the z component of the electric field, and
Hx and Hy denote the x and y components of the magnetic
field, respectively. In addition, ε, σ, and μ denote the per-
mittivity, electrical conductivity, and the magnetic perme-
ability, respectively.

To discretize (1)–(3) by MTDM, nodes xE
i (i =

1, 2, . . . ,NE) for Ez and xH
i (i = 1, 2, . . . ,NH) for Hx and

Hy are first aligned in a domain, where NE denotes the
number of nodes for Ez, and NH denotes the number of
nodes for Hx and Hy. In MTDM, the leapfrog method
is employed to discretize the time-domain. The space
domain is discretized by using shape functions based on
meshless methods. The discretized forms of (1)–(3) are as
follows [1, 2, 5]:

En
z,i =

(
ε

Δt
− σ

2

)
En−1

z,i +

NH∑
j=1

⎛⎜⎜⎜⎜⎜⎝Hn− 1
2

y, j

∂φH
j,i

∂x
− H

n− 1
2

x, j

∂φH
j,i

∂y

⎞⎟⎟⎟⎟⎟⎠
(
ε

Δt
+
σ

2

) ,

(4)

H
n+ 1

2
x,i = H

n− 1
2

x,i − Δt
μ

NE∑
j=1

En
z, j

∂φE
j,i

∂y
, (5)

H
n+ 1

2
y,i = H

n− 1
2

y,i +
Δt
μ

NE∑
j=1

En
z, j

∂φE
j,i

∂x
, (6)

where n is the time step, En
z,i ≡ En

z (xE
i ), H

n+ 1
2

x,i ≡ H
n+ 1

2
x (xH

i ),

and H
n+ 1

2
y,i ≡ H

n+ 1
2

y (xH
i ). In addition, φE

j (x) and φH
j (x)

denote the shape functions corresponding to xE
j ( j =

1, 2, . . . ,NE) and xH
j ( j = 1, 2, . . . ,NH), respectively.

3. Shape Functions for MTDM
By using MTDM, Ez,Hx, and Hy in (1)–(3) are dis-

cretized by shape functions based on meshless methods.
Note that the shape functions φE

j (x) and φH
j (x) in (4)–(6)

are similarly determined. Hence, in this section, we do not
use E and H as superscripts.

In MTDM, it is assumed that the shape functions sat-
isfy a property, φi(x j) = δi j, where δi j is the Kronecker
delta [3]. In the following section, we describe the origi-
nal and modified RPIM-based shape functions, since both
shape functions satisfy the above property.

3.1 Original RPIM-based shape functions
First, the nodes, x1, x2, . . . , xN , together with the ra-

dial basis functions (RBFs), w1(x),w2(x), . . . ,wN(x), on
each of the nodes are assigned in the domain Ω and on
the boundary ∂Ω, where N is the number of nodes, and
wi(x) ≡ w(|x − xi|) (i = 1, 2, . . . ,N). In RPIM, it is as-
sumed that a function u(x) can be expanded as

Fig. 1 Support domains for (a) original RPIM-based shape func-
tion and (b) modified RPIM-based shape function.

u(x) =
N∑

i=1

uiφi(x), (7)

where ui is a coefficient, and φi(x) denotes the shape func-
tion corresponding to the ith node xi (i = 1, 2, . . . ,N). Note
that the ith shape function is defined by using a support do-
main centered at an observation point x. A schematic of
the rectangular support domain is illustrated in Fig. 1 (a).

Inside the support domain, the shape functions
φ1(x), φ2(x), . . . , φNs (x) corresponding to x1, x2, . . . , xNs

are determined by solving the linear systems as follows [3]:

Gφ(x) = b(x), (8)

where x1, x2, . . . , xNs are nodes contained in the support
domain, Ns is the number of nodes inside the support,

G ≡
[

W P
PT O

]
, b(x) ≡

[
w(x)
p(x)

]
, (9)

W ≡ [w(x1),w(x2), . . . ,w(xNs )]
T,

P ≡ [p(x1), p(x2), . . . , p(xM)]T,

φ(x) ≡ [φ1(x), φ2(x), . . . , φNs+M(x)]T,

w(x) ≡ [w1(x),w2(x), . . . ,wNs (x)]T, and

p(x) ≡ [p1(x), p2(x), . . . , pM(x)]T.

Similarly, partial derivatives of φ(x) with respect to x and y
are, respectively, determined by solving the linear systems
as follows:

G
∂φ

∂x
(x) =

∂b
∂x

(x), and G
∂φ

∂y
(x) =

∂b
∂y

(x). (10)

In this study, for the 2D case, we adopt M = 3; i.e.,
p(x) = [1, x, y]T, whose components are coefficients of a
first-degree polynomial.
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3.2 Modified RPIM-based shape functions
In MRPIM, the coefficient matrix G in (8) and (10)

is independent of the observation point x; instead, G is
constructed for each subdomain. Figure 1 (b) shows an
example of rectangular subdomains Ω1, Ω2, . . . , Ωm gener-
ated by dividing the domain Ω. This figure also shows a
support domain Ω′

i for the ith subdomain Ωi. Note that Ω′
i

is not determined from the observation point x but from the
center of Ωi [4].

4. Strategy for Embedding MRPIM-
Based Shape Functions in MTDM
In MRPIM, the subdomains, Ω1, Ω2, . . . , Ωm and their

support domains have to be determined. For electro-
magnetic wave propagation simulations by MTDM with
MRPIM-based shape functions in waveguide bends, we
choose rectangular subdomains of the same size, since we
suppose that nodes xE

i (i = 1, 2, . . . ,NE) and xH
i (i =

1, 2, . . . ,NH) are uniformly aligned inside the waveguide.
Figure 2 shows a schematic of the rectangular subdomains.

In Ωi, to determine the support domain Ω′
i , we present

a strategy for adjusting the number Ns of nodes contained
in Ω′

i so that Ns ∈ [Nmin,Nmax] is satisfied as much as pos-
sible. Here, Nmin and Nmax are user-specified parameters
that denote the minimum and maximum numbers of nodes
contained in Ω′

i . This is because if Ω′
i does not contain suf-

ficient nodes, unexpected evaluation results for shape func-
tions may be obtained on an observation point x in Ωi. In
addition, Ns influences the size of the matrix G, i.e., if Ns

is too large, the computational cost for solving (8) and (10)
significantly increases. Furthermore, without the strategy,
simulations using MTDM with MRPIM-based shape func-
tions may be unstable, as shown in Section 5. The strategy
is represented by the following C-like pseudo-code that is
based on an algorithm given in [6].

dx = βxlx; dy = βyly; k = 0;
do{
Xs = searchNeighborNodes(Ns, c, dx, dy);
if(Ns < Nmin){ dx += β

E
x lx; dy += β

E
y ly; }

else if(Ns > Nmax){ dx − = βR
x lx; dy − = βR

y ly; }
++k;

}while(Ns � [Nmin,Nmax] && k < kmax);
Here, dx and dy denote the x- and y-length of Ω′

i , respec-
tively, and lx and ly denote the x- and y-length ofΩi, respec-
tively. In addition, βx, βy, βE

x , βE
y , βR

x , βR
y and kmax are user-

specified parameters. In particular, βx and βy are set for
determining the initial lengths of dx and dy, respectively;
βE

x and βE
y are set for enlarging dx and dy, respectively; and

βR
x and βR

y are set for reducing dx and dy, respectively. Note
that kmax is set for determining the maximum number of it-
erations, since satisfying Ns ∈ [Nmin,Nmax] is sometimes
difficult, depending on the node alignment.

In the function “searchNeighborNodes,” nodes con-
tained in a rectangular domain Ω̂′

i of center c, x-length dx

and y-length dy are searched, and the nodes are returned to

Fig. 2 Schematic of rectangular subdomains for a waveguide
bend.

Xs. In addition, the number Ns of nodes Xs is updated in
the function. Note that the center c of Ω̂′

i coincides with
the center of Ωi. After the do-while loop, we set Ω′

i = Ω̂
′
i .

5. Numerical Experiments
In this section, numerical experiments are conducted

to investigate the performance of MTDM with MRPIM-
based shape functions for a 2D electromagnetic wave prop-
agation simulation in the waveguide bend illustrated in
Fig. 3 (a). In the figure, we set w = 0.3 m, h = 1.2 m,
and R = 0.45 m. In addition, in the simulation, we as-
sume that the wave source is a sine wave whose am-
plitude, frequency, and speed are 1.0 V/m, 1.0 × 109 Hz,
and 299792458 m/s, respectively. Furthermore, to sat-
isfy the Courant condition for the 2D MTDM [5], Δt =
0.6 min|xH

i − xH
j |/c s (i, j = 1, 2, . . . ,NH , i � j), where c is

the speed of light.
In Fig. 3 (a), xE

i and xH
j are represented as red squares

and blue triangles, respectively (i = 1, 2, . . . ,NE , j =
1, 2, . . . ,NH). In addition, the node alignment is based on
the staggered mesh that is employed in the standard FDTD.
This is because the simulation may become unstable if the
node alignment is inappropriate [5]. As boundary condi-
tions, the perfectly matched layer (PML) and the perfect
electric conductor (PEC) are employed. PMLs are im-
posed at the waveguide edges, and PECs are imposed on
the waveguide sides, as shown in Fig. 3 (a). Note that these
boundary conditions in MTDM can be imposed in the same
manner as in FDTD (see [7] for more details).

To generate shape functions for MTDM, we adopt a
reciprocal multi quadric (RMQ):

wi(x) =

⎛⎜⎜⎜⎜⎝ |x − xi|2
d2

i

+ α2

⎞⎟⎟⎟⎟⎠
− 1

2

, (11)

as the RBF in (9), where di =
√

d2
x + d2

y , and α is an user-

specified parameter; we set α = 0.1. In addition, we set
lx = 1.3Δx m, ly = 1.3Δy m, βx = βy = 3.0, βE

x = βE
y =

0.11, βR
x = β

R
y = 0.07, and kmax = 100.

Computations are performed on a computer equipped
with a 2.66 GHz Intel Core i7 920 processor, 24 GB RAM,
Ubuntu Linux ver. 12.10, and g++ ver. 4.7.2 with double-
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Fig. 3 (a) Schematic of the waveguide bend employed in the numerical experiments. In this figure, xE
i and xH

j are represented as red
squares and blue triangles, respectively. (b) Distribution of Ez obtained from MRPIM-MTDM without the strategy for adjusting
Ns (t = 54000Δt,N = 96165). Black regions correspond to an inappropriate value for Ez. (c) Distribution of Ez obtained from
RPIM-MTDM (t = 70000Δt,N = 302645). (d) Distribution of Ez obtained from MRPIM-MTDM (t = 70000Δt,N = 302645).

Fig. 4 Dependence of the amplification/damping rate RAD on
Nmin and Nmax for N = 211715.

precision arithmetic. In the following, RPIM-MTDM and
MRPIM-MTDM denote MTDMs with original and modi-
fied RPIM-based shape functions, respectively.

Figure 3 (b) shows the distribution of Ez obtained from
MRPIM-MTDM without the strategy for adjusting Ns. The
distribution is observed in t = 54000Δt s. The parameters
for determining N are fixed at Δx = Δy = Δr = 0.006 m
and Δθ = π/400, thus N = 96165, where N = NE + NH .
Note that NE and NH include the number of nodes con-
tained in PML regions, and the number of layers for each
PML region is 16. The parameters for support domains are
fixed at dx = 1.5lx m and dy = 1.5ly m, i.e., dx and dy for all
support domains are all the same. In Fig. 3 (b), the black
parts denote regions in which Ez has inappropriate values.
These black parts appear from around t = 50000Δt s, and
Ez subsequently diverged. These results suggest that the
simulation becomes unstable when dx and dy are constant
for all support domains. Hence, a strategy for adjusting Ns

is necessary for embedding MRPIM in MTDM.
To determine appropriate values for Nmin and Nmax,

the dependence of the amplification/damping rate RAD on
Nmin and Nmax is shown in Fig. 4. The parameters are fixed
at Δx = Δy = Δr = 0.004 m and Δθ = π/600, thus N =
211715. Although a pair of Nmin and Nmax for generating
φE

i (x) (i = 1, 2, . . . ,NE) and φH
j (x) (i = 1, 2, . . . ,NH) can

be set separately, the same pair is used for generating φE
i (x)

and φH
j (x). Note that the subdomains for φE

i (x) and for
φH

i (x) are exactly the same. However, the support domains
for φE

i (x) and for φH
i (x) are not the same, since φE

i (x) and
φH

j (x) are separately generated, although the same pair of
Nmin and Nmax is chosen. Here, the amplification/damping
rate RAD is defined as follows:

RAD ≡
〈∫

Γ2

|E × H| d


〉
t

/ 〈∫
Γ1

|E × H| d


〉
t

. (12)

In (12), to calculate RAD, the y-coordinate of Γ1 and that
of Γ2 are set to 0.6 and 2.4, respectively (see Figs. 3 (c)
and 3 (d)). In Fig. 4, we attempted to calculate RAD for
all cases that satisfy Nmin < Nmax. However, for some
pairs of Nmin and Nmax, RAD could not be calculated, since
the simulations using these pairs were unstable. Note that
RAD for these pairs are not shown in Fig. 4. Especially
for Nmax = 15 and 24, the simulations were always un-
stable. For this reason, there is no bar for Nmax = 15 and
24 in Fig. 4. The figure shows that, when Nmin is relatively
small, RAD cannot be calculated occasionally. In addition,
for Nmax ≥ 27, RAD can be calculated for all cases. Based
on these results, we fixed Nmin = 21 and Nmin = 27.

For the following, electromagnetic wave propagation
is simulated by using the above fixed values for Nmin and
Nmax. Figures 3 (c) and 3 (d) show distributions of Ez ob-
tained from RPIM-MTDM and MRPIM-MTDM, respec-
tively. Both distributions were observed at t = 70000Δt s.
Parameters are fixed at Δx = Δy = Δr = 1/300(m) and
Δθ = π/720, thus N = 302645. It must be noted here
that, when MRPIM-MTDM without the strategy for ad-
justing Ns is applied to a simulation with the same pa-
rameters, the simulation becomes unstable from around
t = 1400Δt. Hence, by using the strategy with appro-
priate parameters, the stability of electromagnetic wave
propagation simulations using the MRPIM-MTDM is con-
siderably improved. For the quantitative comparisons be-
tween the two distributions, a maximum error εmax ≡
maxNE

i=1 |ERPIM
z,i − EMRPIM

z,i |/max |Ez| and an average error
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Fig. 5 Dependence of the amplification/damping rate RAD on N.

Fig. 6 Computation time dependence for determining the partial
derivatives of φE

i (x) at xH
j and those of φH

j (x) at xE
i on

N(i = 1, 2, . . . ,NE , j = 1, 2, . . . ,NH).

εavg ≡ ∑NE

i=1 |ERPIM
z,i −EMRPIM

z,i |/(NE max |Ez|) are calculated,
where ERPIM

z,i and EMRPIM
z,i denote Ez(xE

i ) obtained from
RPIM-MTDM and MRPIM-MTDM, respectively. In ad-
dition, max |Ez| = 1.0, since the wave source is a sine
wave whose amplitude is 1.0 V/m. The calculated errors
are εmax = 1.72 × 10−2 and εavg = 1.68 × 10−3. Hence, al-
though the two distributions in Figs. 3 (c) and 3 (d) are vi-
sually almost the same, the difference between ERPIM

z,i and
EMRPIM

z,i is up to about 1.72% and on average it is about
0.168%.

To investigate the convergence of RAD in both meth-
ods, RAD is plotted as a function of N, as shown in Fig. 5.
The figure shows that there is no obvious difference be-
tween RAD of the two methods. In addition, from around
N = 100000, RAD � 1.0 in both methods. In the meth-
ods, RAD essentially converged to a value that is slightly
less than 1.0. Since RAD < 1 at convergence, the electro-
magnetic wave is slightly damped in both methods. We
consider that this damping is caused by wave reflections in
the waveguide bend.

Finally, we investigate the computation time of both
methods. We first focus on the iteration of (4)–(6). For
30000 iterations and N = 96165, the computation times
for RPIM-MTDM and MRPIM-MTDM are about 467.7 s
and 410.1 s, respectively. For 30000 iterations and N =
302645, the computation times for RPIM-MTDM and
MRPIM-MTDM are about 1454.3 s and 1282.6 s, respec-
tively. From these results, we conclude that MRPIM-

MTDM is slightly faster than RPIM-MTDM. Next, we

focus on the process for determining
∂φE

i

∂x (xH
j ),

∂φE
i

∂y (xH
j ),

∂φH
j

∂x (xE
i ) and

∂φH
j

∂y (xE
i ) (i = 1, 2, . . . ,NE , j = 1, 2, . . . ,NH).

This process is required once before starting the iterations
of (4)–(6). For both methods, the computation time de-
pendence for this process on N is shown in Fig. 6. The
figure shows that, in all cases, the computation time for
MRPIM-MTDM is about 2.38 times less than that for
RPIM-MTDM. Therefore we conclude that the total com-
putation time for MRPIM-MTDM is less than that for
RPIM-MTDM. Especially when N is large, the difference
in the computation times increases for the two methods.

6. Conclusion
To speed up electromagnetic wave propagation sim-

ulations using the MTDM in complex shaped domains, a
strategy for embedding the modified radial point interpo-
lation method (MRPIM)-based shape functions in MTDM
while maintaining the stability of the simulations has been
presented. In numerical experiments, the performance
of MRPIM-MTDM has been investigated and compared
with that of MTDM with the RPIM-based shape func-
tions (RPIM-MTDM). Conclusions obtained in the present
study are summarized as follows:

1. By using the strategy for adjusting Ns together
with appropriate parameters, the stability of elec-
tromagnetic wave propagation simulations using the
MRPIM-MTDM is considerably improved.

2. The approach to convergence of RAD in MRPIM-
MTDM is almost the same as that in RPIM-MTDM.

3. The total computation time for MRPIM-MTDM is
less than that for RPIM-MTDM.

In a future study, details for damping the electromag-
netic wave will be investigated. In addition, MRPIM-
MTDM will be applied to larger-scale problems including
three-dimensional cases.
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