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The eXtended Boundary Node Method (X-BNM) with the periodic Radial Point Interpolation Method
(RPIM) shape function is proposed and its performance is investigated numerically. The results of computa-
tions show that the accuracy of the X-BNM with the periodic RPIM shape function is almost equal to that with
the Moving Least-Squares (MLS) shape function. In addition, the speed of the X-BNM with the periodic RPIM
shape function is extremely faster than that with the MLS shape function. Therefore, the periodic RPIM shape
function is useful for improving the performance of the X-BNM.
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1. Introduction
The boundary element method (BEM) is a numerical

method for solving boundary-value problems of partial dif-
ferential equations and has been so far used in the field of
the nuclear fusion science. For example, the BEM has been
adopted to solve the Grad-Shafranov equation which de-
scribes the magnetohydrodynamics equilibrium of plasma
in terms of the poloidal magnetic flux [1]. Although the
BEM is well suited for solving the Grad-Shafranov equa-
tion, it has the inherent demerit: a boundary must be di-
vided into a set of elements before executing the BEM
code.

In order to resolve the above demerit, Mukherjee et al.
developed the boundary node method (BNM) [2]. Because
the BNM is one of the meshless approaches, the prepara-
tion of the input data can be extremely simplified. In ad-
dition, the BNM has been reformulated without using in-
tegration cells and its performance has been investigated
numerically [3, 4]. This method is called the extended
BNM (X-BNM). The results of computations show that
the accuracy of the X-BNM is much higher than that of
the dual-reciprocity BEM. In addition, we have modified
the X-BNM for enhancing the accuracy degradation due to
the complex boundary shape [5].

In spite of a high usefulness, the X-BNM has the fol-
lowing demerit. The shape function lacks the Kronecker
delta function property. This causes that the number of un-
knowns is equal to twice that of boundary nodes. On the
other hand, Wang and Liu proposed the radial point inter-
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polation method (RPIM) [6]. The RPIM has the advantage
that the shape function possesses the Kronecker delta func-
tion property. If the shape function used in the RPIM were
applied to the X-BNM, the demerit for the speed of the
X-BNM could be removed.

In previous works, we proposed an acceleration tech-
nique for the X-BNM by applying the RPIM shape func-
tion. The results of computations have showed that the
speed of the X-BNM with the RPIM shape function is ex-
tremely faster than that with the Moving Least-Squares
(MLS) shape function [7]. However, the accuracy of the
proposed method is drastically degraded because of the
lack of periodicity of the shape function.

The purpose of the present study is to numerically in-
vestigate the performance of the X-BNM with the periodic
RPIM shape function.

2. Function Interpolation
In the X-BNM, both a solution u and its normal

derivative q ≡ ∂u/∂n are assumed to be contained in the
functional space V ≡ span (Φ1,Φ2, · · · ,ΦN) where the
shape function Φi(s) is a function of the arclength s along
the boundary. Hence, Φi(s)’s must be determined by us-
ing arclengths assigned to boundary nodes. In this study,
we summarize the two approaches for deriving the shape
functions.

2.1 Shape function
The approximate function f h(s) of a function f (s) can

be written as

f h(s) = pT(s) a(s), (1)
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where p(s) = [p1(s), p2(s), · · · , pm(s)]T is a monomial ba-
sis of order m and a(s) is a m-dimensional vector such that
all components are a function of s.

a(s) can be determined by minimizing the following
functional:

J[a(s)] ≡
N∑

i=1

wi(s)
[
pT(si) a(s) − f (si)

]2
,

where si and wi(s) denote the arclength to the ith bound-
ary node and a weight function with a compact support,
respectively. From the stationarity condition of the func-
tional J[a(s)] with respect to a(s), we obtain

A(s)a(s) = B(s) f , (2)

where A(s), B(s) and f are defined by

A(s)=
N∑

i=1

wi(s) p(si) pT(si),

B(s)=
N∑

i=1

wi(s) p(si) eT
i ,

f =
N∑

i=1

f (si) ei.

Here, {e1, e2, · · · , eN} is the orthonormal system of the N-
dimensional vector space.

By solving (2) and substituting it into (1), we can get

f h(s) =
N∑

i=1

ΦM
i (s) f (si), (3)

where

ΦM
i (s) = pT(s) A−1(s) B(s) ei. (4)

Throughout the present study, ΦM
i (s) is called the MLS

shape function. Note that the shape function ΦM
i (s) ful-

fills ΦM
i (s j) � δi, j where δi, j is the Kronecker’s delta. This

means that the number of unknowns is twice that of bound-
ary nodes. In other words, the solution of the linear system
obtained by the discretization does not become the value of
either u or q on the boundary node. Therefore, the speed of
the X-BNM is extremely lower than that of the mesh-based
methods, e.g., the BEM.

In order to overcome the demerit of the MLS shape
function, the interpolation technique used in the RPIM has
been proposed. By using the radial basis function ri(s) and
the monomial basis function pi(s), the shape function can
be determined. Then, the curve passing through all bound-
ary nodes is assumed as the approximate function. The ap-
proximate function f h(s) of f (s) in the influence domain
can be written as

f h(s) = hi(s)
[
rT (s) b(s) + pT (s) a(s)

]
. (5)

Here, hi(s) is given by

hi(s) = H (1 − |s − si| /Ri) ,

where H(x) and Ri denote the Heaviside step function and
the ith support radius, respectively. In addition, r(s) =
[r1(s), r2(s), · · · , rN(s)]T is the set of radial basis functions
and b(s) is a N-dimensional vector such that all compo-
nents are functions of s.

In order to determine a(s) and b(s), we enforce the in-
terpolation to satisfy the given value at the boundary nodes
as

[
R(s) P(s)
PT (s) O

] [
b(s)
a(s)

]
=

[
f
0

]
, (6)

where R(s) and P(s) are defined by

R(s)=
N∑

i=1

hi(s) r(si) rT (si),

P(s)=
N∑

i=1

hi(s) ei pT (si).

By solving (6) and substituting it into (5), we can get

f h(s) =
N∑

i=1

ΦR
i (s) f (si), (7)

where

ΦR
i (s)=

[
rT(s), pT(s)

] [ R(s) P(s)
PT (s) O

]−1[
ei

0

]
. (8)

The shape functionΦR
i (s) has the Kronecker delta function

property. Therefore, the number of unknowns is equal to
that of boundary nodes. In this study, ΦR

i (s) is called the
RPIM shape function.

2.2 Periodicity
When the length of the boundary denotes L, s be-

comes a periodic function of period L. In this sense, it is
necessary for the shape functions have periodicity. How-
ever, the shape functions generated from the global ar-
clengths, s1, s2, · · · , sN , do not have periodicity. In this
study, we propose an algorithm to calculate the periodic
shape function by using the following two steps:

1. s∗1, s
∗
2, · · · , s∗N are determined by using the following

equation: s∗j = mod
(
s j − (s − L/2) , L

)
+ s − L/2.

2. The shape function is calculated on the basis of
s∗1, s

∗
2, · · · , s∗N .

Let us investigate the behavior of the MLS shape func-
tions and that of the RPIM one. In the numerical experi-
ments, five nodes are uniformly placed on the boundary
of a unit circle. In the MLS shape function, the spline-
type weight function is assumed. The explicit form of the
weight function is given by

wi(s) = ω (|s − si| /Ri) ,

ω(r) = H(1 − r)(1 − 6r2 + 8r3 − 3r4).
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(a)

(b)

Fig. 1 (a) The behavior of the MLS shape functions and (b) that
of the RPIM shape function. Here, the parameters are
fixed as follows: m = 2 and γ = 1.6. The symbol • indi-
cates the boundary node.

In the RPIM shape function, ri(s) is given by the compactly
supported radial basis function (CSRBF) [8] and its ex-
plicit form is expressed as

ri(s) = ρ (|s − si| /Ri) ,

ρ(r) = (1 − r)3(3r + 1).

In both shape functions, Ri is defined by

Ri=γmin
(∣∣∣s mod (i+1,N)−si

∣∣∣ , ∣∣∣s mod (i−1,N)−si

∣∣∣) ,
where γ is a constant.

As a typical example, we compute the shape
functions, ΦM

i (s) and ΦR
i (s), and show their behavior

(Figs. 1 (a) and 1 (b)). We see from these figures that both
shape functions are a smooth function with a period of 2π.
Moreover, the MLS shape function lacks the Kronecker
delta function property, whereas the RPIM shape function
satisfies it.

From these results, we can completely remove the de-
merit of the MLS approximation by using the RPIM ap-
proximation.

3. Performance Evaluation
In this section, the performance of the X-BNM with

Table 1 Evaluation Environment.

Parameter Value
OS MacOS X 10.9
CPU Intel Core i5 1.3 GHz
Memory 4 GB
Compiler gfortran 4.8.2
Compiler option -O3

the periodic RPIM shape function is investigated numeri-
cally. As an example problem, we adopt the 2-D Poisson

problem over Ω ≡
{
(x, y)

∣∣∣∣[x − Δ(y/2)2
]2
+ (y/2)2 < 1

}
and the given functions used in the 2-D Poisson prob-
lem are determined so that the analytic solution may be
u = e−3(x2+y2) − cosh x sin y + cos x sinh y. Also, only the
Direclet problem is solved throughout the present study.

When the Poisson equation is transformed to an equiv-
alent boundary integral equation, the equation contains not
only the boundary integrals but also a domain integral. In
order to remain only the boundary integrals, we assume
that the right hand side g(x) of the Poisson equation is ap-
proximated as

g(x) =
M∑

l=1

αl ρ

⎛⎜⎜⎜⎜⎜⎝
∣∣∣x − xl

∣∣∣
R̄

⎞⎟⎟⎟⎟⎟⎠ , (9)

where x1, x2, · · · , xM are poles on ∂Ω ∪ Ω. Moreover, R̄
and αl’s are all constants. Throughout the present study, R̄
is fixed as R̄ = 1.5.

The more detail with respect to the discretization of
the 2-D Poisson problem by means of the X-BNM can be
found in [3]. In the following, the Gauss-Legendre quadra-
ture with NG is employed as the integration method and its
value is fixed as NG = 12. Moreover, the evaluation envi-
ronment is shown in Table 1.

In our previous work, parameters used in the MLS
shape function are fixed as m = 1 and γ = 1 [3]. Hence,
we employ parameters of the RPIM shape function as is
the case in the MLS shape function.

As the measure of the accuracy, we adopt the relative
error defined by

ε =

√∥∥∥uA − uN

∥∥∥2 + ∥∥∥qA − qN

∥∥∥2√∥∥∥uA

∥∥∥2 + ∥∥∥qA

∥∥∥2
,

where the subscript notations, A and N, are analytic and
numerical solutions, respectively, and

∥∥∥ ∥∥∥ denotes the
Euclidean norm. In this section, the X-BNM with the
MLS shape function, the X-BNM with the conventional
RPIM shape function and the X-BNM with the periodic
RPIM shape function are called the X-BNM(MLS), the
X-BNM(Conventional RPIM) and the X-BNM(Periodic
RPIM), respectively.

Let us first investigate the accuracy of the X-
BNM(Periodic RPIM). The relative errors are calculated
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Fig. 2 Dependence of the relative error ε on the the number
N of boundary nodes for the case with Δ = 0. Here,
the symbols, �, � and � denote the X-BNM(MLS), the
X-BNM(Conventional RPIM) and the X-BNM(Periodic
RPIM), respectively.

Fig. 3 Dependence of the approximation accuracy of (9) on the
the number M of poles for the case with Δ = 0.

as a function of N and are depicted in Fig. 2. We see
from this figure that the accuracy of the X-BNM(Periodic
RPIM) is higher than that of the X-BNM(Conventional
RPIM). Moreover, the accuracy of the X-BNM(Periodic
RPIM) is almost equal to that of the X-BNM(MLS). In
addition, the relative errors of the X-BNM(MLS) and the
X-BNM(Periodic RPIM) are saturated for N � 500. In or-
der to investigate this tendency in detail, we indicate the
dependence of the approximation accuracy of g(x) on the
number M of the poles. As the measure of the approxima-
tion accuracy of g(x), we adopt the relative error defined
by

εg =

∥∥∥∥∥∥∥g(x) −
M∑

l=1

αl ρ

⎛⎜⎜⎜⎜⎜⎝
∣∣∣x − xl

∣∣∣
R̄

⎞⎟⎟⎟⎟⎟⎠
∥∥∥∥∥∥∥∞∥∥∥g(x)

∥∥∥∞
,

where
∥∥∥ ∥∥∥∞ denotes the maximum norm. The relative er-

ror εg is plotted as a function of M in Fig. 3. The rel-
ative error decreases with an increase in M, whereas it

Fig. 4 Dependence of the CPU time τ on the the number N
of boundary nodes for the case with Δ = 0. Here,
the symbols, �, � and � denote the X-BNM(MLS), the
X-BNM(Conventional RPIM) and the X-BNM(Periodic
RPIM), respectively.

Fig. 5 Dependence of the relative error ε on the triangularity Δ
for the case with N = 500. Here, the symbols, �, � and
� denote the X-BNM(MLS), the X-BNM(Conventional
RPIM) and the X-BNM(Periodic RPIM), respectively.

almost becomes dominant with an increase in M for the
case with M � 700. This result shows that the limit of εg

is almost equal to 10−4. Therefore, relative errors of the
X-BNM(MLS) and the X-BNM(Periodic RPIM) become
constant for N � 500 because the discretization error is
smaller than the approximation error of g(x).

Next, we evaluate the speed of the X-BNM(Periodic
RPIM). The CPU times are plotted as a function of N
in Fig. 4. This figure indicates that not only the speed
of the X-BNM(Conventional RPIM) but also that of the
X-BNM(Periodic RPIM) is faster than that of the X-
BNM(MLS) for the case with N � 500.

Finally, we investigate the influence of the triangular-
ity Δ on the accuracy of the X-BNM(Periodic RPIM). To
this end, the relative errors are calculated as a function of Δ
and are plotted in Fig. 5. We see from this figure that rela-
tive errors of the X-BNM(MLS) and the X-BNM(Periodic
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RPIM) increase with an increase in Δ. However, both
the relative error of the X-BNM(Periodic RPIM) and that
of the X-BNM(MLS) are much lower than that of the X-
BNM(Conventional RPIM) regardless of Δ.

4. Conclusion
We have proposed the X-BNM with the periodic

RPIM shape function so that the number of unknowns be-
comes equal to that of boundary nodes (i.e., the shape func-
tion has the Kronecker delta function property). In ad-
dition, its performance has been investigated numerically.
Conclusions obtained in this paper are summarized as fol-
lows.

1. The accuracy of the X-BNM with the periodic RPIM
shape function is almost equal to that with the MLS
shape function. Even if the boundary shape is
strongly concave, this tendency does not change.

2. The speed of the X-BNM with the periodic shape
function is always faster than that with the MLS shape
function for the case where the number of boundary
nodes exceeds a certain limit.

From the above mentions, we might conclude that the X-
BNM with the periodic RPIM shape function is a powerful
method for a large-scale simulation. In the future work,
we will apply the X-BNM with the periodic RPIM shape
function to the problems of the field of the nuclear fusion

science such as the boundary-value problem of the Grad-
Shafranov equation.
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