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A hybrid code which uses the spectral method for an incompressible fluid and the combined compact finite
difference method for passive scalar is developed and applied to compute the spectrum of the passive scalar
variance in turbulence at very high Schmidt numbers up to 1000. The accuracy and efficiency of the hybrid code
are found to be very satisfactory when compared to the full spectral computation. The scalar spectrum in the
viscous-convective range by direct numerical simulation is found to obey k−1 power law and to exponentially
decay in the far diffusive range, and compared to Kraichnan’s spectrum. It is argued that the exponential decay
of the spectrum in the far diffusive range is due to the intermittency effect of the velocity field.
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1. Introduction
Turbulence is a ubiquitous phenomenon and found in

many places in daily life, engineering flow, in the atmo-
sphere and ocean and in space and fusion plasmas. Tur-
bulence is characterized by its large power of transporting
heat, mass and momentum and by their strong fluctuations.
Since Kolmogorov’s theory many efforts have been made
to elucidate and explain statistical laws of strong fluctua-
tions as well as the mean properties such as mean velocity.
The latter is strongly affected by the macroscopic condi-
tions and thus not universal. On the other hand, small scale
motion in turbulent flow is generated through cascade pro-
cess during which memories at large scales are lost and a
universal equilibrium state is achieved. It is known that
when the Reynolds number is very high the 4/5 law for the
third order moment of the velocity increment is asymp-
totically exact and that the Kolmogorov constant in the
kinetic energy spectrum and the scaling exponents of the
moments of the longitudinal velocity increments are little
changed for various types of turbulent flows, which means
that those statistical quantities are universal.

Problem of passive scalar (no reaction to the veloc-
ity field) convected by turbulence is very fundamental and
important to the understanding of turbulent mixing phe-
nomena, anomalous transport in turbulence and MHD tur-
bulence. Since the equation for the passive scalar is lin-
ear and local in space, the problem has been thought to
be more tractable than the turbulent velocity and has at-
tracted many interests from the beginning. However, the
experiments and direct numerical simulations (DNSs) have
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shown that the statistical laws of the passive scalar is not
as definite as in the velocity.

The spectrum of the scalar variance is defined by
〈
θ2
〉
=

∫ ∞

0
Eθ(k) dk. (1)

When the Reynolds number is very high and the Schmidt
number S c = ν/κ is O(1), where ν and κ are the molecular
viscosity and the molecular diffusivity, respectively, Ok-
bukhov [1] and Corrsin [2] have independently found that
the inertial-convective range exists and the scalar spectrum
obeys

Eθ(k) = COχ ε
−1/3k−5/3. (2)

When S c � 1 (the Reynolds numbers is not necessarily
high), Batchelor derived the scalar spectrum

Eθ(k) = CBχ(ε/ν)
−1/2k−1 exp

(
−CB(kηB)2

)
, (3)

in the viscous-convective range [3, 4], where ε and χ are
the mean kinetic energy dissipation rate per unit mass and
the mean scalar dissipation rate, respectively and ηB =

(νκ2/ε)1/4 is the Batchelor length. The Obukhov-Corrsin
constant CO and the Batchelor constant CB are consid-
ered to be universal, but the values scatter considerably
when compared to the Kolmogorov constant K in the ki-
netic energy spectrum E(k) = Kε2/3k−5/3 in the inertial
range [4]. The functional form of Eθ(k) in the far diffu-
sive range when the viscous-convective range exists is not
settled. Batchelor predicted a rapid decay in the Gaussian
form as in Eq. (3) [3] , while Kraichnan predicted the ex-
ponential decay [5–7].

Eθ(k) = CBχ(ε/ν)
−1/2k−1

(
1 +
√

6CBkηB

)
× exp

(
−
√

6CBkηB

)
, (4)
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for the velocity field which obeys the multivariate Gaussian
statistics and is delta correlated in time [6]. The constant
CB is determined by the Lagrangian spectral theory such
as ALHDIA, SBALHDIA, and LRA which do not contain
any ad hoc parameters [4, 7], but their predicted values are
quite low when compared to the ones obtained by exper-
iments and DNS which scatter considerably too [4]. This
shows that even in this simplest problem the scalar spec-
trum is not well understood. Although the 4/3 law for the
third order moment of the squared scalar increment times
the velocity increment is asymptotically exact, no exact
relation for the statistics consisting of the scalar quantity
alone is known. Even the isotropy of the scalar at small
scales is questioned, and the scaling exponents of the high
order moments of the scalar increments vary from exper-
iments to experiments. These facts raise a question con-
cerning the strength of universality of the passive scalar
statistics at small scales. In this context, it is very impor-
tant and necessary to the understanding of the universality
in the scalar turbulence to carefully study the scalar spec-
trum in an asymptotic state such that a rigorous theory can
be established and the numerical computation is as faithful
to the assumption used in the theory as possible. In this
paper we study the scalar spectrum at very high Schmidt
number by using DNS with very high resolution and ex-
amine the theoretical prediction.

2. Hybrid Method
Since the universality of the small scale statistics of

turbulence and scalar manifests in the asymptotic limit
of large Reynolds number or large Schmidt number, the
DNS study requires very high resolution in space and
time. The high performance computers use a large num-
ber of nodes and the conventional spectral method using
the Fast Fourier Transform (FFT) has a serious bottleneck
in the communication. Therefore more efficient numeri-
cal method while keeping the comparable accuracy as the
spectral method is highly demanding. For this purpose
we have newly developed a hybrid code and applied it to
the problem of the passive scalar spectrum in the viscous-
convective and far diffusive range at very high Schmidt
number.

An idea to develop an efficient code is to anticipate
the locality and non-locality of the equations for an incom-
pressible fluid and passive scalar [8]. They are written as

∂u
∂t
+u · ∇u=− 1

4π
∇
∫

1
|x − y|∇u : ∇u dy + νΔu, (5)

∂θ

∂t
+ u · ∇θ = κΔθ, (6)

for an infinite domain, where the pressure is eliminated
by using the incompressibility condition. Equation (5) is
nonlocal in space while the scalar equation (6) is local.
The non-local data transfer is unavoidable because of the
non-locality of the pressure term whatever the numerical
scheme is chosen. Therefore the spectral method is the

Fig. 1 Schematic picture of solving linear equation for com-
bined compact finite difference method on parallel ma-
chine.

most accurate method for solving the Poisson equation for
the pressure. On the other hand, if we have a suitable dif-
ferential operator with high accuracy which is effectively
comparable to that of the spectral method, it is possible to
reduce the amount of data transfer required for the differ-
entiation. For this purpose we have chosen the combined
compact finite difference (CCD) method [9–11]. Mixed
use of the spectral method for the incompressibility fluid
and the CCD method for the passive scalar is called as
hybrid method. Highly parallelized code was developed
for the three dimensional domain decomposition, and ac-
curacy and performance of the hybrid method were exam-
ined in detail in [8].

Since the computation of the passive scalar problem
on the many core machine is communication intensive, it
is important to see the cost of the data transfer. Suppose
that a cubic domain with size 2π is discretized into N3

grid points. In the spectral method, the spatial derivative is
equivalent to multiplication by ik therefore no data trans-
fer occurs, while it requires O(N3) data transfer to compute
the convective term by using 3DFFT. On the other hand, in
the CCD method, to obtain the derivatives means to solve
the linear equation Lx = b. On the parallel computer, we
split the solution vector x into two parts as x = xbody+ xsurf

(see Fig.1) [11]. The vectors xbody and xsurf are the so-
lutions of Lxbody = b and L̃xsurf = Bxbody, respectively,
where the matrices L̃ and B are deduced from L. The first
equation is solved within each node so that no data trans-
fer is required, while in the second equation the data xbody

at grid points near boundaries of all nodes are gathered on
one node, solved and redistributed on each node, thus the
nonlocal data transfer of the order of O(N2) is necessary
(Fig. 2). When N is large, the hybrid method for the scalar
equation has advantage over the spectral method.

One more thing to be considered is the fact that when
the Schmidt number is very high there is the scale separa-
tion between the velocity and scalar fields in the viscous-
convective range, such that the velocity is so smooth while
the scalar field is highly fluctuating. Then it is quite nat-
ural to use the coarser mesh for the velocity and the fine
mesh for the scalar and the velocity field at the grid points
of the scalar is well approximated by the linear or cubic in-
terpolation. The use of dual grid reduces considerably the
computational cost.
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Fig. 2 Estimate of the amount of data transfer in the spectral and
CCD methods.

Fig. 3 Comparison of CPU time for spectral and hybrid codes at
S c = 1000 measured on Plasma Simulator. In the spec-
tral computation, the numbers of grid points of the veloc-
ity and scalar are Nv = Nθ = 20483 for red circle and
Nv = Nθ = 40963 for red triangle. In the hybrid computa-
tion, Nθ = 20483 for blue circle and Nθ = 40963 for blue
triangle, and Nv = 2563 for two cases.

A benchmark test of the hybrid method for S c = 1000
is shown in Fig. 3. In the spectral computation, the num-
bers of grid points of the velocity and scalar are equal and
Nv = Nθ = 20483 for red circle and Nv = Nθ = 40963

for red triangle. In the hybrid computation, Nθ = 20483

for blue circle and Nθ = 40963 for blue triangle, and
Nv = 2563 for two cases. The same width of time in-
crement is used for the velocity and scalar equations. The
strong scaling of the code is seen and the acceleration in the
computation is enhanced when the number of grid points
for the scalar is increased from Nθ = 20483 to Nθ = 40963.
Due to the difference in the scaling of the amount of data
transfer, O(N3) for the spectral method and O(N2) for the
hybrid method, and due to the use of dual grid when the
Schmidt number is very high, the advantage of the hybrid
method over the spectral method increases with increase of
Nθ for a given Nv(< Nθ). However, it should be noted that
this advantage of the hybrid method depends on the per-
formance of the communication of the high performance
computer. The above points of the hybrid method applies
to the equation which is local in space such as the induction
equation for the magnetic field in MHD.

3. Spectrum of Passive Scalar Vari-
ance
We have integrated by using the hybrid code a set of

equations (5) and (6) to which the Gaussian random force
f and scalar injection fθ are added

Fig. 4 Averaged enstrophy (blue) and scalar variance spectra in
three dimensions for S c = 200 (green) and S c = 1000
(red).

〈 f (x, t)〉 = 0, (7)〈
fi(x, t) f j(y, s)

〉
= Pi j(∇)D(|x − y|)δ(t − s), (8)

D(k) = D0k−1 for k < 2, D(k) = 0 otherwise, (9)

for the Navier-Stokes equation and

〈 fθ(x, t)〉 = 0, (10)

〈 fθ(x, t) fθ(y, s)〉 = Dθ(|x − y|)δ(t − s), (11)

Dθ(k) = D0k−1 for k < 2, Dθ(k) = 0 otherwise, (12)

for the scalar equation, respectively, where 〈 〉 denotes the
ensemble average. The Schmidt numbers are 200 and 1000
and the number of grid points are 2563 for the velocity
and 10243 at S c = 200 and 20483 at S c = 1000 for the
passive scalar. The Taylor microscale Reynolds number is
kept constant as Rλ = 42 on average for all the runs. The
scalar statistics are gathered and averaged over consider-
ably long time duration. Figure 4 shows the three dimen-
sional spectra of the enstrophy k2E(k) (blue) and the scalar
Eθ(k) at S c = 200 (green) and 1000 (red). The typical pa-
rameters in these computations are ε = 0.250, χ = 0.655,
η = 7.52 × 10−2, ηB = 5.32 × 10−3 for S c = 200 and
ε = 0.274, χ = 0.628, η = 7.35 × 10−2, ηB = 2.32 × 10−3

for S c = 1000, where η and ηB are the Kolmogorov and
Batchelor lengths, respectively. It is clearly seen that there
is a scale separation between the velocity and scalar and
the scalar spectrum has an asymptotic power law range.
Figure 5 presents the normalized compensated scalar spec-
trum χ −1(ε/ν)−1/2kEθ(k). The curve at low wavenumber
range is horizontal at CB = 5.7 which gives the Batche-
lor constant. This value is larger than the previously ob-
tained value 4.9 for which the uniform scalar gradient is
applied to maintain the scalar field in a statistically steady
state [12].

There have been arguments about the spectrum in the
far diffusive range when the k−1 range exists. As seen in
Eqs. (3) and (4), the two theories predict the different be-
havior of the spectrum in the far diffusive range. In order to
examine the spectrum in the far diffusive range, we plotted
the one dimensional scalar spectrum
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Fig. 5 Comparison of compensated three dimensional scalar
variance spectrum at S c = 1000. The Kraichnan spec-
trum is computed with CB = 5.7.

Fig. 6 Comparison of the one dimensional scalar variance spec-
trum in the far diffusive range at S c = 1000. The Kraich-
nan spectrum is computed with CB = 5.7.

E1θ(k) =
∫ ∞

k

Eθ(p)
p

dp, (13)

in Fig. 6. As clearly seen, the curves by DNS and Kraich-
nan are straight line over the range 0.1 < kηB < 2, mean-
ing the exponential decay of Eθ(k) and the slope of the
Kraichnan spectrum is slightly steeper than that of DNS.
It should be stressed that although both curves are close
to each other, the underlining assumption for the veloc-
ity, multivariate Gaussian and delta correlated in time, in
Kraichnan’s theory is totally different from the actual ve-
locity field in DNS for which the velocity is highly non-
Gaussian and finitely correlated in time. Therefore physi-
cal reason for the exponential decay of Eθ(k) must be ex-
plored.

Batchelor’s spectrum Eq. (3) was obtained by con-
sidering the balance between the local squeezing motion
due to the straining and the molecular diffusive action,
∂
[|γ|kEθ(k)

]
/∂k = −κk2Eθ(k), where γ < 0 is the small-

est eigenvalue of the rate of strain tensor. The solution of
this equation is easily obtained as

Eθ(k, γ) ∝ 1
|γ|k exp

(
−κk2 / |γ|) . (14)

He replaced |γ| by a representative value as |γ|eff =

Fig. 7 Visualized scalar field at S c = 1000.

CB(ε/ν)−1/2 and obtained Eq. (3). However, the strain fluc-
tuates in space and time and so does for γ(x, t). Then it
is quite reasonable to take the average over the distribu-

tion of γ as E(k) =
∫ 0

−∞ Eθ(k, γ)P(γ)dγ. We have computed
the probability density function P(γ) by DNS which differs
definitely from the one obtained from the Gaussian veloc-
ity field, and substituted into the above equation. The ob-
tained results for Eθ(k) is found to be very close to the spec-
trum obtained by DNS (figure not shown), which means
that the exponential decay of the spectrum is due to the
intermittency effects of the velocity strain field.

It is interesting to see how the scalar field looks like.
Figure 7 shows the scalar field visualized at S c = 1000
computed on N = 20483 grid points at Rλ = 42. The scalar
field is confined in thin layer and wounded around some
axis. The relation to the straining field is the future work.
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