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Numerical methods for solving the monoenergetic drift kinetic equation (DKE) are powerful tools for obtain-
ing viscosity coefficients. However, these methods do not apply when the collision frequency and radial electric
field become large. For example, when the radial electric field becomes large, poloidal resonance effect occurs
and degrades the accuracy of the numerical solutions to DKE. But when we calculate the neoclassical viscosity
in Heliotron J, which is an L = 1 helical-axis heliotron device, we cannot neglect the resonance effect in the
presence of high-Z ions. In this study, we combine viscosity coefficients calculated by the numerical method
with those obtained from analytical solutions that take the effects of the first poloidal resonance into account.
We use this method to obtain monoenergetic viscosity coefficients for arbitrary collision frequencies and radial
electric fields in the L = 1 heliotron device.
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1. Introduction
In nonaxisymmetric toroidal systems, it is one of the

crucial works to determine parallel flows, neoclassical vis-
cosities, and ambipolar radial electric fields. To solve
the drift kinetic equation (DKE) for neoclassical transport
analysis, numerical methods are effective to handle com-
plex magnetic geometries in nonaxisymmetric plasmas.
Based on the solution of DKE, neoclassical transport anal-
yses that satisfy parallel momentum conservation between
different particle species, self-adjointness, and Galilean in-
variance have been proposed [1–4] using the monoener-
getic viscosity coefficients L∗, M∗, and G(BS), which denote
radial particle diffusion, parallel viscosity, and bootstrap
current, respectively.

Heliotron J is a nonaxisymmetric device with an L =
1/M = 4 helical-axis helical coil, where L and M are the
pole and pitch numbers of the helical coil, respectively. Ex-
periments have been performed in this device to change
the bumpy component of the magnetic field for investigat-
ing the controllability of parallel flow and bootstrap cur-
rent [5–7]. Furthermore, analyses of the monoenergetic
viscosity coefficients obtained from numerical solutions of
the DKE have been reported [8]. However, because vio-
lations of momentum conservation occur when the colli-
sion frequency and radial electric field become large, we
often cannot apply numerical methods to evaluate the mo-
noenergetic viscosity coefficients [3, 4], numerical meth-
ods are inappropriate to solve the DKE. In addition, in
the L-H transition phase, poloidal resonance effects de-
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grade the accuracy of the numerical monoenergetic vis-
cosity coefficients [9–12] in the large radial electric field
limit. When we calculate the neoclassical viscosity of plas-
mas in Heliotron J, which contain high-Z ions, these effects
should be taken into account.

Here, we combine the viscosity coefficients calculated
by the numerical method with those from an analytical so-
lution that takes the above effects into account. This en-
ables us to obtain monoenergetic viscosity coefficients for
arbitrary collision frequencies and radial electric fields in
the L = 1 heliotron device. We also address the controlla-
bility of monoenergetic viscosity coefficients by changing
the configuration of the magnetic field.

2. Analytical Viscosity Coefficients
The linearized DKE is given by

(V‖ + VE) fa1 −CL
a ( fa1)

= −uda · ∇ faM +
ea

Ta
v‖B
〈BE‖〉
〈B2〉 faM, (1)

where V‖ is the parallel orbit propagator, VE is the E × B
drift operator, CL

a is the linearized collision operator, uda is
the radial drift velocity, faM is the local Maxwellian dis-
tribution function, and fa1 is a distortion from the local
Maxwellian [1]. To solve Eq. (1) numerically, we employ
the drift kinetic equation solver (DKES) code [13, 14]. In
this code, the pitch-angle scattering (PAS) operator is used
as the linearized collision operator for simplicity because
it is appropriate when a higher-order Legendre term domi-
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nates. The PAS operator is given by

CPAS
a ≡ νa

D

2
∂

∂ξ
(1 − ξ2)

∂

∂ξ
, (2)

where ξ is the cosine of the pitch angle of the particle. In
Eq. (2), the energy-dependent deflection frequency νa

D is
given by

νa
D ≡

∑
b

3
√
π

4
τab
−1xa

−3(Φ(xb) −G(xb)), (3)

where (3
√
π/4)τab

−1 ≡ ea
2eb

2nb lnΛ/(4πε0
2ma

2vta
3), ε0 is

the space permeability, xa ≡ v/vta is the particle veloc-
ity normalized by the thermal velocity vta =

√
2Ta/ma,

Φ(xa) is the error function, and G(xb) is the Chandrasekhar
function [1–4]. Here, τab is the collision time between
test particles of species a and field particles of species b.
The DKES code solves Eq. (1) by neglecting perpendicular
drift terms except for the E×B drift in uda ·∇ fa1. In nonax-
isymmetric stellarator/heliotron configurations under low
collisionality conditions, a so-called bounce-averaged per-
turbation is generated in the ripple-trapped pitch-angle
range. Therefore, retaining only V‖ fa1 as the derivative of
fa1 is usually inadequate. To include the poloidal preces-
sion of trapped particles, VE fa1 is also retained. In addition
to this drift due to the radial electric field, which is known
as the superbanana diffusion regime, bounce-averaged per-
pendicular drifts due to ∇B and the magnetic field curva-
ture b · ∇b are sometimes not negligible in conditions of
weak radial electric field strengths and low collision fre-
quencies. For stellarator/heliotron magnetic fields

B/B0 = 1 − εt(r) cos θ + εh(r, θ)

× cos(Lθ − Mζ + γ(r, θ)), (4)

radial diffusion in the superbanana collisionality
regime [15] is estimated to be

L∗(SB) = 4
√
π

εh
√
εt

(dεh/dr)2

(
ea

mav

)2 νa
D

v
, (5)

for the collisionality condition L∗(SB) < L∗(1/ν). Here, the
flux function r = a

√
s is the effective minor radius, which

is defined by the normalized toroidal flux s and the effec-
tive plasma radius a = 0.16 m. The 1/ν diffusion L∗(1/ν)

can be estimated by the well-known Shaing-Hokin for-
mula [16],

L∗(1/ν) =
4
√

2
9π

ε2
t ε

3/2
h

(ψ′)2

v

νa
D

, (6)

where ψ is a toroidal magnetic flux divided by 2π, and
ψ′ = dψ/dr. An empirical scaling for radial diffusion in
the collisionless detrapping collisionality regime, which is
suppressed by E × B drift [17], is

L∗(CD) =

√
π

6
ε3/2

t

νa
D

v

(Er

v

)−2

, (7)

where Er = −∂ΦE/∂r, and ΦE(r) is the electrostatic po-
tential. In a rough estimate of the (νa

D, Er) space region in

which ∇B and curvature drifts in the poloidal direction are
not negligible, the poloidal dependence of εh is neglected,
at least in these asymptotic limit formulas for L∗(SB), L∗(1/ν),
and L∗(CD). Therefore the bounce-averaged poloidal drift of
the trapped particles due to dεh/dr is not negligible com-
pared with that due to Er in conditions of weak radial elec-
tric fields of

|Er | < 1

2
√

6

(
εt

εh

)1/2 ∣∣∣∣∣dεh/dr
ea

∣∣∣∣∣ mav
2, (8)

and low collision frequencies of

νa
D <

21/4

3π3/4
(ε3/2

t ε1/2
h )1/2

∣∣∣∣∣dεh/dr
eaψ′

∣∣∣∣∣ mav
2. (9)

For hydrogen and deuterium ions in typical Heliotron J ex-
perimental conditions (dεh/dr � 2εh/r ≈ 4 m−1, εt ≈ εh ≈
0.1, ψ′ ≈ 0.1 Tm, mav

2 ≈ 100 eV), Eqs. (8) and (9) are
estimated to be |Er | < 80 V/m and νa

D < 70 s−1, respec-
tively, and thus they are negligibly smaller than the actual
ambipolar electric field strength (few kV/m) and collision
frequency (105 s−1). Therefore, neglect of ∇B and curva-
ture drifts in the poloidal direction in Eq. (1) is adequate
for studies at Heliotron J conditions.

In the DKES, the monoenergetic transport coefficients
Djk(K) are defined by

Djk(K) ≡ (σ+j , F
+
k ) + (σ+j , F

−
k ) ( j, k = 1, 3), (10)

where K ≡ xa
2 ≡ mav

2/2Ta is the normalized kinetic en-
ergy. In Eq. (10), σ+1 and σ+3 are source terms associated
with the radial particle flux and parallel particle flow, re-
spectively, and F+j and F−j are the response functions asso-
ciated with σ+j . These functions are defined by

(V‖ + VE)F−j −CL
a F+j ≡ σ+j

(V‖ + VE)F+j −CL
a F−j ≡ 0

( j = 1, 3). (11)

The quantity (F ,G) represents the inner product

(F ,G) ≡ 1
2

∫ 1

−1
dξ〈F G〉, (12)

of arbitrary functions F (θ, ζ, ξ) and G(θ, ζ, ξ). We obtain
Djk(K) from the inner product of σ+j and (F+k + F−k ) by ap-
plying a variational principle for the Fourier-Legendre ex-
panded distribution function. This Djk(K) depends on the
magnetic field configuration, νa

D/v and Er/v. Numerical
analyses of neoclassical transport by use of these monoen-
ergetic viscosity coefficients have been performed [1–4].
In these methods, ga = fa1 − f (l=1)

a1 was introduced. The
l = 1 Legendre component f (l=1)

a1 of the distribution func-
tion fa1 is associated with parallel particle flow. This ga is
determined by the driving forces GXa from the radial gra-
dient and GUa from the parallel flow [1]. The GXa and GUa

are obtained from the differential equations

(V‖ + VE −CL
a )

[
GUa

GXa

]
=

[
σUa

σXa

]
, (13)
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Fig. 1 Contour maps of |B| in the (θ, ζ) plane on the flux surface r/a = 0.71 for (a) STD configuration, (b) HG configuration, and (c) RG
configuration. Black solid lines denote magnetic field lines.

where σUa and σXa are defined in Ref. [1]. Note the fol-
lowing about the approximation for VE used in the DKES
code. As shown in Ref. [13], a straightforward derivation
of VE gives

VE = Er
∇r × B

B2
· ∇ + Er

(∇r × B
2B2

· ∇ ln B

)

×
{

(1 − ξ2)ξ
∂

∂ξ
+ (1 + ξ2)v

∂

∂v

}
. (14)

For the purpose to operate GUa and GXa, which are domi-
nated by poloidal and toroidal variations of higher Legen-
dre orders l ≥ 2, the second term is a higher order of δB
when comparing with the first term. Here, δB ≡ B − 〈B〉
is the magnetic field strength modulation on the surfaces.
A primary advantage of omitting this order together with
the use of CPAS

a is a reduction in the phase-space dimen-
sion of Eq. (13) from 4D (θ, ζ, v, ξ) to 3D (θ, ζ, ξ). In this
3D calculation, the drift velocity uE = E × B/B2 is re-
placed by E × B/〈B2〉 for retaining the surface-averaged

conservation of particles and energy
〈∫ 1

−1
(VEF )dξ

〉
= 0

and the antisymmetric property of the Vlasov operator
(G,VEF ) = (F ,VEG), which is required along with the
self-adjoint property of the collision operator for obtaining
the Onsager symmetric full transport matrix.

If

eaσ
+
1 � maν

a
D

∣∣∣∣∣∣VE

∫ l

Ũdl

∣∣∣∣∣∣ , (15)

is satisfied, we can calculate GXa using Djk(K) obtained

from the DKES [3, 4, 18], where
∫ l

dl denotes the integral
along the magnetic field line and Ũ is obtained as the solu-
tion of

B · ∇
(

Ũ
B

)
= B × ∇s · ∇

(
1
B2

)
. (16)

However, in the large νa
DEr/v

2 limit, Eq. (15) cannot be sat-
isfied and conservation of momentum is violated. In this
case, D11 and D13 = D31 calculated by the DKES can-
not be used to obtain L∗ and G(BS). Moreover, in the large
νa

D/v limit, the monoenergetic viscosity coefficients are in-

versely proportional not to νa
D but to νa

T [1–4], where

νa
T = 3νa

D + ν
a
E

=

(
3
√
π

4

)∑
b

τab
−1

{
H(xb)

xa
3
+ 4

Ta

Tb

(
1 +

mb

ma

)
G(xb)

xa

}
,

(17)

represents a collision frequency for relaxation of pressure
anisotropy. In Eq. (17), νa

E is the energy exchange fre-
quency and H(xb) = Φ(xb) − 3G(xb). Furthermore, when
Er becomes sufficiently large, the poloidal velocities of the
passing particles are canceled by the poloidal components
of uE. In such a case, particles do not describe banana or-
bits. This poloidal resonance occurs at Mpa ∼ |m − nq|/m
for each (m, n) Fourier mode and reduces D11 significantly,
where Mpa = |uE|B/vtaBp is the poloidal Mach number,
q is the safety factor, and Bp is the poloidal magnetic
field [10–12]. For the (1, 0) Fourier mode, resonance oc-
curs at Mpa ∼ 1. This effect is closely related to the L-H
transition theory, however, this topic is beyond the scope of
this study. Therefore, we adopt the analytical solution that
includes poloidal resonance in the νa

D/v and Er/v regime
for which the numerical method is inappropriate. In the
plateau regime, we can obtain the viscosity coefficients us-
ing the Krook operator and Fourier expansion. For each
Fourier component, we define bmn as

bmn ≡ Er

v

(Bζm + Bθn)

(χ′m − ψ′n)
〈B2〉− 1

2 , (18)

where χ is a poloidal magnetic flux divided by 2π. For
|bmn| < 3.0×10−2, the monoenergetic viscosity coefficients
in the plateau and Pfirsch-Schlüter regimes are given in
Ref. [19]. For the condition |bmn| > 3.0 × 10−2, we replace
the function

⎧⎪⎪⎨⎪⎪⎩
(

8
π
|χ′m − ψ′n|

)3/2

+

(
5
νa

T

v

√
〈B2〉 V ′

4π2

)3/2
⎫⎪⎪⎬⎪⎪⎭
−2/3

, (19)

in Eqs. (17) and (18) in Ref. [19] by

9amn

8|χ′m − ψ′n|
∫ 1

−1

(ξ2 − 1/3)2

(ξ − bmn)2 + amn
2

dξ, (20)
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Fig. 2 Typical νa
D(v = vta)/vta and Er/vta for all particle species

on the ρ = 0.1 − 0.9 magnetic flux surface in Heliotron J
plasma, where ρ = r/a. Plasma particle parameters are as
follows: Er = 0.5 kV/m, ne(ρ) = 1.5 × 1019(1 − ρ2) m−3,
Te(ρ) = 300(1 − ρ2) eV, TI(ρ) = 175(1 − ρ1.57)1.11 eV, and
Zeff = 1.9.

where amn is defined by

amn ≡
νa

T

v

〈B2〉1/2
|χ′m − ψ′n|

V ′

4π2
. (21)

The analytical formula (for the single Fourier mode m = 1,
n = 0) is compared with the numerical solution (DKES)
in Ref. [12]. Note that Eq. (20) is inapplicable for calcu-
lations in the weak Er limit because the conservation of
particles and of energy are violated.

3. Numerical Results
The monoenergetic viscosity coefficients were studied

for three magnetic configurations: standard magnetic rip-
ple configuration (STD), high-bumpy configuration (HG),
and reversed-mirror ripple configuration (RG). Contour
maps for |B| on the flux surface of r/a = 0.71 are shown
in Fig. 1. The figure shows that the largest ripple depth oc-
curred in the HG configuration and the smallest occurred
in the RG configuration. Figure 2 shows typical νa

D/vta

and Er/vta for e−, D+, and C6+ in Heliotron J. The fig-
ure shows that b10 > 0.1 is satisfied for C6+. This indicates
a strong reduction in monoenergetic transport coefficients
by the first poloidal resonance in the presence of C6+ ions
in Heliotron J. Therefore, when we estimate the monoen-
ergetic viscosity coefficients for such plasmas, we should
include the poloidal resonance effect. The monoenergetic
viscosity coefficients L∗, M∗, and G(BS) obtained from an-
alytical and numerical methods in the STD configuration
are shown in Fig. 3. For M∗ and G(BS), we connect the ana-
lytical and numerical solutions at the point where the parti-
cle velocity gives the maximum value of M∗ obtained from
the DKES. We connect L∗ at the point where the particle

Fig. 3 Monoenergetic viscosity coefficients L∗, M∗, and G(BS)

on the flux surface r/a = 0.71 in the STD configuration.
Solid lines indicate numerical solutions from the DKES
and dotted lines indicate analytical solutions.

velocity satisfies

νa
T

v
=

8
5

4π
V ′
χ′〈B2〉−1/2. (22)

For simplicity, here we replace νa
T by 3νa

D. Figure 3 shows
that using this method, we can obtain smooth and continu-
ous monoenergetic viscosity coefficients at arbitrary colli-
sion frequencies and electric fields. Figure 4 shows the de-
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Fig. 4 Monoenergetic viscosity coefficients at weak (Er/v =

1.0 × 10−4 T) and strong (Er/v = 3.0 × 10−2 T) electric
field on the flux surface r/a = 0.71 in the HG, STD and
RG configurations.

pendence of the bumpy component on the monoenergetic
viscosity coefficients at weak (Er/v = 1.0 × 10−4 T) and
strong (Er/v = 3.0× 10−2 T) electric fields. In the HG con-
figuration, M∗ is larger than those in the other two configu-
rations in all collisionality regimes. Since M∗ is closely as-
sociated with parallel viscosity damping, this result shows

that the large magnetic ripple depth by the bumpy compo-
nent in the HG configuration yields strong viscosity damp-
ing. Parallel particle flows and bootstrap currents are ex-
pected to be suppressed in this configuration. However, a
detailed analysis of parallel particle flows using the mo-
ment method [1–4] is beyond the scope of this study.

4. Conclusions
In this study, we estimated the monoenergetic viscos-

ity coefficients of plasmas in an L = 1 helical-axis he-
liotron device, Heliotron J. We applied analytic calcula-
tions together with a numerical solution to avoid problems
concerning the validity of the simplified DKE in the DKES
code due to the poloidal resonance effect and violation of
parallel momentum conservation. The combination of nu-
merical solutions from the DKES code with analytical so-
lutions allowed us to obtain continuous monoenergetic vis-
cosity coefficients for arbitrary collision frequencies and
electric fields. We found that changes in the bumpy field
component can effectively control the neoclassical viscos-
ity. A detailed analysis of the parallel particle flows using
the moment method will be reported in future work.

Acknowledgments
One of the authors (K.N) would like to thank He-

liotron J experimental group and Dr. H. Lee of Natural Sci-
ence Research Institute, Korea Advanced Institute of Sci-
ence and Technology for fruitful discussions. This research
was supported by the NIFS for No.NIFSKUHL038.

[1] H. Sugama and S. Nishimura, Phys. Plasmas 9, 4637
(2002).

[2] H. Sugama and S. Nishimura, Phys. Plasmas 15, 042502
(2008).

[3] S. Nishimura et al., Phys. Plasmas 17, 082510 (2010).
[4] S. Nishimura et al., Phys. Plasmas 18, 069901 (2011).
[5] H. Lee et al., Plasma Phys. Control. Fusion 55, 035012

(2013).
[6] S. Kobayashi et al., D1-5-O4, The 12th Asia Pacific

Physics Conference of AAPPS, Japan, 2013.
[7] G. Motojima et al., Nucl. Fusion 47, 1045 (2007).
[8] S. Nishimura et al., J. Plasma Fusion Res. 8, 1003 (2009).
[9] K.C. Shaing and E.C. Crume, Jr., Phys. Rev. Lett. 63, 2369

(1989).
[10] K.C. Shaing, Phys. Fluids B 5, 3841 (1993).
[11] J. Lore et al., Phys. Plasmas 17, 056101 (2010).
[12] H. Maaßberg et al., Phys. Fluids B 5, 3627 (1993).
[13] S.P. Hirshman et al., Phys. Fluids 29, 2951 (1986).
[14] W.I. van Rij and S.P. Hirshman, Phys. Fluids B 1, 563

(1989).
[15] D.E. Hastings et al., Nucl. Fusion 29, 2951 (1985).
[16] K.C. Shaing and S.A. Hokin, Phys. Fluids 26, 2136 (1983).
[17] E.C. Crume, Jr. et al., Phys. Fluids 31, 11 (1988).
[18] D.A. Spong, Phys. Plasmas 12, 056114 (2005).
[19] S. Nishimura et al., Fusion Sci. Technol. 51, 61 (2007).

1403145-5


