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A multi-pass Thomson scattering (TS) system has the advantage of enhancing scattered signals. We con-
structed a multi-pass TS system modeled on the GAMMA 10 TS system; the new system has a polarization-based
configuration with an image relaying system. For the first time, we used the new system to measure electron
temperatures in the GAMMA 10 plasma. By using the multi-pass TS system with four passes, the integrated
scattering signal was magnified by approximately a factor of three.
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The Thomson scattering (TS) diagnostic is one of the
most useful methods for measuring electron temperatures
and radial density profiles in plasmas. For low-electron-
density plasmas, such as the GAMMA 10 plasma and pe-
ripheral plasmas in fusion devices, an effective TS system
must be developed [1, 2]. The GAMMA 10 TS system can
measure the radial profiles of electron density and tempera-
ture in the electron-density range above 5×1017 m−3. How-
ever, in the lower electron-density region, measurement
accuracy is low. Moreover, higher time resolutions of TS
measurements are required for future turbulence studies. In
many devices, multi-pass TS systems have been proposed
for improving the accuracy of electron temperature mea-
surements [3–10]. At the Tokamak Experiment for Tech-
nology Oriented Research (TEXTOR), the signal-to-noise
ratio has been improved by using a multi-pass TS system
in which a pair of concave mirrors recycle photons [9]. In
the TST-2 spherical tokamak, a confocal spherical mirror
system is used [8,10]. In the JT-60U, a double-pass system
was constructed using a phase-conjugate mirror for reflec-
tion [3]. Although these approaches have increased the re-
liability of TS systems, they are limited by their optical
systems. Each laser beam pass is different in the concave-
mirror-type TS system in TEXTOR and TST-2. The scat-
tering volume must be set near the focal point of the con-
cave mirror, and the system must be calibrated for each
beam pass. Moreover, the phase-conjugate-mirror system
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in JT-60U requires a high-purity laser bandwidth.
A new multi-pass TS system has been developed in the

tandem mirror GAMMA 10. This multi-pass TS scheme
effectively increases the scattering signal intensity from
plasmas. The scheme can be implemented by modifying
a basic single-pass TS system with the addition of a po-
larization device, a high-reflection mirror, and lenses for
relaying images of the laser beam. This allows a laser
pulse to be focused multiple times onto the scattering vol-
ume. In GAMMA 10, a double-pass TS system was con-
structed, doubling the TS signal and improving the resolu-
tion of electron temperatures [4, 6]. In the LHD, a double-
pass TS system, which is the same design as the GAMMA
10 double-pass TS system, was installed and operated [5].
The configuration of the multi-pass TS system in GAMMA
10 can be used to realize perfect coaxial multi-passing on
each pass. By adding a polarization control device, a po-
larizer, and a high-reflection mirror to the double-pass TS
system, we have successfully constructed a multi-pass TS
system [7].

In this paper, we present the first result from an elec-
tron temperature measurement using the new multi-pass
TS system. The planed specifications for the new multi-
pass Thomson scattering system are as follows: the ob-
tained TS signal will be about three times larger than that
from a single pass and the accuracy of electron tempera-
ture measurements in the multi-pass configuration will be
more than twice that in the single-pass configuration.
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Fig. 1 Schematic of the multi-pass TS system.

A schematic diagram of the new multi-pass sys-
tem is shown in Fig. 1. A more detailed description is
given elsewhere [7]. This system is a modification of the
GAMMA 10 double-pass TS system [6]. A horizontally
polarized laser beam from the yttrium–aluminum–garnet
(YAG) laser (Continuum, Powerlite 9010, 2 J/pulse, pulse
width of 10 ns, and 10 Hz) is reflected from a short-pass
mirror and then passes through two Faraday rotators for
isolation, two half-wave plates, three polarizers, a Pock-
els cell (FastPulse, Q1059P12SG-1064), mirrors 2© and
3©, and irises before being focused onto the plasma cen-
ter by the first convex lens (Shigmakoki, f = 2000 mm,
φ = 50 mm) at the downside port window. After interact-
ing with the plasma, the laser beam is emitted from the
upper-side port window and is collimated by the second
convex lens (Shigmakoki, f = 2000 mm, φ = 50 mm). A
pair of lenses forms a key component in this optical sys-
tem. These lenses maintain the quality of the laser beam
during multi-pass propagation through the image-relaying
optical system from the iris to the reflection mirror. The
laser beam is reflected by reflection mirror 4© for the sec-
ond pass and is again focused onto the plasma. The Fara-
day rotator and the Pockels cell are used to control polar-
ization. The Pockels cell switches the polarization of the
laser beam from horizontal to vertical for reflected passes
during the gate pulse (∼ 550 ns). The third laser pass is
produced by a Pockels cell for polarization control and re-
flection mirror 5©. The laser light is confined between re-
flection mirrors 4© and 5© for multi-pass propagation. For
the TS light-collection optics, we used an Al:SiO2-coated
spherical mirror with a curvature radius of 1.2 m and a di-
ameter of 0.6 m. The scattered light is collected and re-
flected by the spherical mirror, after which it reaches an
optical fiber bundle with a cross section of 2 × 7 mm2.
The scattering angle is 90◦. The 6.67-m-long optical fiber
bundle is connected to a 5-channel polychromator. The
fiber aperture is located at about 0.873 m from the spher-
ical mirror. The polychromator is comprised of five relay

Fig. 2 Multi-pass TS signal of CH. 1.

and collection lenses, five interference filters, and five sil-
icon avalanche photodiodes (PerkinElmer, C30659-1060-
3AH, bandwidth of 50 MHz) with preamplifiers. Measured
wavelengths of the polychromator are 1059 ±2 nm (CH.
1), 1055 ±2 nm (CH. 2), 1050 ±3 nm (CH. 3), 1040 ±7 nm
(CH. 4), and 1020 ±14 nm (CH. 5). A four-channel high-
speed oscilloscope (IWATSU, DS5524) is simultaneously
used to measure four wavelength channels with a band-
width of 200 MHz and a sampling rate of 1.0 GS/s. The
measured signals are recorded by a Windows PC using the
LabVIEW analyzing software. Electron temperatures are
obtained by the chi–square method.

We used this system to measure electron tempera-
tures in the GAMMA 10 plasma. Figure 2 shows the
measured TS signal from the multi-pass signal of CH. 1.
We can clearly identify TS signals from the first through
fourth passes in the multi-pass configuration. The inte-
grated TS signals from passes 1–4 (integration time of
Δt = 120 ns) in the multi-pass configuration were about
three times larger than that in the first pass (Δt = 30 ns).
The electron temperatures obtained from the first pass and
from passes 1–4 were about 34 ±5 eV and 28 ±2 eV, re-
spectively. The error in the electron temperature obtained
from the first pass was ±5 eV, which is more than twice that
from passes 1–4 (±2 eV). The resolution of the electron
temperature measurement was improved by the multi-pass
TS system. We have successfully constructed a multi-pass
TS scattering system and, for the first time, have obtained
multi-pass TS signals for electron temperature measure-
ments.
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