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The governing equations of the shielding current density j in a high-temperature superconducting film are
formulated for the case where the film contains cracks or holes. Since the derived equations cannot be solved
only with the boundary condition j · n = 0 on the film surface, additional conditions are also derived. A numer-
ical method is proposed for solving the initial-boundary-value problem of the equations and its performance is
evaluated by means of the numerical simulation of the permanent magnet method.
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1. Introduction
Recently, high-temperature superconductors (HTSs)

have been proposed for numerous engineering applica-
tions: fusion magnet, energy storage system, power ca-
ble and magnetic shielding apparatus. Since the evalua-
tion of the shielding current density is often required for
the design of engineering applications, several numerical
methods [1–3] have been so far proposed to calculate the
shielding current density.

By assuming the thin-plate approximation, Yoshida
et al. [1] derived the governing equation of the shielding
current density in an HTS film. However, the resulting
equation contains z (a coordinate in the thickness direc-
tion) as a parameter so that its solution has z-dependence.
In contrast, the solution is assumed not to depend on z in
the thin-plate approximation. For the purpose of resolv-
ing this contradiction, the authors averaged Faraday’s law
over the thickness to reformulate the governing equation
of the shielding current density [2]. However, the obtained
equation holds only for the an HTS film containing neither
cracks nor holes.

The purpose of the present study is to derive the
governing equations of the shielding current density in a
multiple-layer HTS film with defects such as cracks and
holes. Furthermore, a numerical method is developed for
solving the initial-boundary-value problem of the equa-
tions and its performance is evaluated by means of numer-
ical experiments.
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2. Governing Equations
In this section, we derive the governing equations of

the shielding current density in a multiple-layer HTS film
containing cracks or holes. An HTS film of thickness b is
exposed to the time-dependent magnetic field B/μ0. Let
us first assume that its cross section Ω vertical to the thick-
ness direction does not change at all through the thickness
(see Fig. 1). The cross section Ω is simply connected for
an HTS film containing no defects, whereas it is multi-
ply connected for an HTS film with cracks or holes. If
Ω is multiply connected, its boundary ∂Ω is composed of
not only the outer boundary C0 but the inner boundaries,
C1,C2, · · · ,CK . In the following, the region enclosed by
Ck and its area are denoted by Ωk and Ak, respectively.

By taking the thickness direction as z-axis and choos-

Fig. 1 A schematic view of an HTS film with multiple-layer and
multiply-connected structure.
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ing the centroid of the HTS film as the origin, we use the
Cartesian coordinate system 〈O : ex, ey, ez〉. In the follow-
ing, x and x′ are position vectors of two points in the xy
plane, whereas z and z′ are defined by z = x + zez and
z′ = x′ + z′ez, respectively. In addition, l and n denote a
tangent unit vector and a normal unit vector on ∂Ω, respec-
tively.

2.1 Multiple thin-layer approximation
In general, HTS films have a strong anisotropy in the

critical current density [1]: its component along the c-axis
is negligibly small as compared with that parallel to the a-b
plane. In order to take the anisotropy into account, we set
the following two assumptions:

1. An HTS film has an M-layered structure and the
shielding current density never flows across the inter-
face between every two adjacent layers.

2. Each layer is sufficiently thin that both the shielding
current density and the electric field may not change
in the thickness direction.

The above assumptions are called a multiple-thin-layer ap-
proximation [2]. In the following, the pth layer and its
boundary are denoted by Vp and ∂Vp, respectively. In ad-
dition, the shielding current density and the electric field
in Vp are denoted by jp and Ep, respectively, and the mag-
netic flux density generated by jp is denoted by Bp.

Under the above assumptions, the behavior of the
electromagnetic fields can be expressed as

∂

∂t

M∑
q=1

〈ez · Bq〉p + ez · (∇ × Ep) +
∂

∂t
〈ez · B〉p = 0

(p = 1, 2, · · · ,K), (1)

Bq = μ0∇ ×
�

Vq

w∗(z, z′) jq(x′, t) d3 z′

(q = 1, 2, · · · ,K), (2)

where w∗(z, z′) = (4π|z − z′|)−1. In addition, the square
bracket 〈 〉p means an average operator over the thickness
of Vp.

In HTS films, Ep and jp are closely related to each
other through the J-E constitutive equation. For the equa-
tion, we adopt the following power law [4–7]:

Ep = E(| jp|) jp

| jp| , E( j) = EC

(
j

jC

)N

, (3)

where jC and EC denote the critical current density and
the critical electric field, respectively, and N is a positive
constant.

As usual, the initial and boundary conditions are as-
sumed as

jp = 0 at t = 0 (p = 1, 2, · · · ,K), (4)

jp · n = 0 on ∂Vp (p = 1, 2, · · · ,K). (5)

By solving the initial-boundary-value problem of (1) and
(2), we can analyze the time evolution of the shielding cur-
rent density.

2.2 Current vector potential
Under the multiple-thin-layer approximation, there

exists a scalar function S q(x, t) such that

jq = ∇ × [(S q/ε) ez], (6)

where ε ≡ b/(2 M). Hence, the electromagnetic state of the
HTS film is characterized by the following M-dimensional
vector-valued function:

−→
S (x, t) =

M∑
p=1

−→ep S p(x, t).

Here, {−→e1,
−→e2, · · · ,−→eM} are the orthonormal system of the

M-dimensional vector space. Incidentally, as is apparent
from (6), (S q/ε) ez is a current vector potential of jq.

In terms of
−→
S , the initial and boundary conditions, (4)

and (5), can be written in the form,

−→
S =
−→
0 at t = 0, (7)

−→
S =
−→
0 on C0, (8)

−→
S =
−→
S k(t) on Ck (k = 1, 2, · · · ,K), (9)

where
−→
S k(t)’s are unknown vector-valued functions of

time. Note that additional conditions are required for de-

termining
−→
S k(t)’s.

Next, we derive the governing equation of
−→
S . Substi-

tution of (6) into (2) yields

1
μ0

M∑
p=1

−→ep 〈ez · Bq〉p

=
1
ε

(−→eq ⊗ −→eq

)
·
⎡⎢⎢⎢⎢⎢⎣c(x)

−→
S (x, t) +

K∑
l=1

cl(x)
−→
S l(t)

⎤⎥⎥⎥⎥⎥⎦
+

�
Ω

←→
Q (|x − x′|) · −→S (x′, t) d2x′

+

K∑
l=1

�
Ωl

←→
Q (|x − x′|) d2x′ · −→S l(t), (10)

where c(x) and cl(x) are the shape coefficient associated

with Ω and that with Ωl, respectively. In addition,
←→
Q (r)

is the second-order tensor whose (p, q) element Qpq(r) is
given in [2]. By substituting (10) into (1), we get the fol-
lowing integrodifferential equation:

μ0
∂

∂t
(Ŵ
−→
S ) +

−→
E (
−→
S ) +

∂
−→
β

∂t
=
−→
0 in Ω. (11)

Here, M-dimensional vectors,
−→
E (
−→
S ) and

−→
β , are given by
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−→
E (
−→
S ) =

M∑
p=1

−→ep [ez · (∇ × Ep)],

−→
β =

M∑
p=1

−→ep 〈ez · B〉p,

and Ŵ is a linear operator defined by

Ŵ
−→
S ≡ 1

ε

−→
S +
�
Ω

←→
Q (|x − x′|) · −→S (x′, t) d2x′

+

K∑
l=1

�
Ωl

←→
Q (|x − x′|) d2x′ · −→S l(t).

As mentioned above, additional conditions must be
imposed to determine

−→
S k(t) (k = 1, 2, · · · ,K). For the con-

ditions, the integral forms of Faraday’s law on Ωk’s are

adopted. By rewriting them in terms of
−→
S , we get

μ0
d
dt
−→ωk[
−→
S ] + −→ϕk(

−→
S ) +

d
−→
Φk

dt
=
−→
0 . (12)

Here, the functional −→ωk[
−→
S ] is defined by

−→ωk[
−→
S ] ≡ Ak

ε

−→
S

+

�
Ωk

d2x
�
Ω

←→
Q (|x − x′|) · −→S (x′, t) d2x′

+

K∑
l=1

�
Ωk

d2x
�
Ωl

←→
Q (|x − x′|) d2x′ · −→S l(t).

In addition, −→ϕk(
−→
S ) and

−→
Φk are given by

−→ϕk(
−→
S ) =

M∑
p=1

−→ep

∮
Ck

Ep · l ds,

−→
Φk =

M∑
p=1

−→ep

�
Ωk

〈ez · B〉p d2x,

where s denotes an arclength along Ck. Consequently, (8),
(9) and (12) are the boundary conditions to (11), whereas
(7) is the initial condition to (11). If the initial-boundary-
value problem of (11) is solved, the time variation of the
shielding current density is determined.

3. Virtual Voltage Method
In this section, the numerical method for solving the

initial-boundary-value problem of (11) is described in de-
tail. In the following, the superscript (n) denotes a value at
time t = nΔt, where Δt is a time-step size.

If the initial-boundary-value problem of (11) is dis-

cretized with the backward Euler method,
−→
S (n) becomes a

solution of the following nonlinear boundary-value prob-
lem:

−→
G(
−→
S ) ≡ μ0Ŵ

−→
S + Δt

−→
E (
−→
S ) − −→u = −→0 in Ω, (13)

−→
S ∈ H(Ω̄), (14)

−→γk[
−→
S ] ≡ μ0

−→ωk[
−→
S ] + Δt−→ϕk(

−→
S ) − −→υk =

−→
0

(k = 1, 2, · · · ,K), (15)

Here, −→u and −→υk are given by

−→u = μ0Ŵ
−→
S (n−1) − (

−→
β (n) − −→β (n−1)),

−→υk = μ0
−→ωk[
−→
S (n−1)] − (

−→
Φk

(n) − −→Φk
(n−1)).

In addition, the function space H(Ω̄) is defined by

H(Ω̄) ≡
{
−→w(x) : −→w = −→0 on C0,

∂−→w
∂s
=
−→
0 on Ck (k = 1, 2, · · · ,K)

}
.

After a straightforward calculation, we can get the
weak form that is equivalent to (13) and (15). It must
be noted here that the derived weak form completely in-
cludes the boundary condition (15). In other words, (15)
is treated as a natural boundary condition. Therefore, the

numerically evaluated value
−→
Nk[
−→
S ] of −→γk[

−→
S ] does not al-

ways vanish. In fact, the results of computations show that
these tendencies become remarkable with a decrease in b.
Throughout the present paper, the method, in which (15) is
treated as a natural boundary condition, is called the con-
ventional method.

In order to suppress the numerical error in
−→
Nk[
−→
S ], we

propose the virtual voltage method [7]. The basic idea of
this method is to apply the virtual voltage φp

k along the in-

ner boundary Ck of Vp so as to have
−→
Nk[
−→
S ] =

−→
0 strictly

fulfilled. Specifically, the boundary condition (15) is re-
placed with the following two conditions:

−→γk[
−→
S ]
Δt

=

M∑
p=1

−→epφ
p
k ≡
−→
φk (k = 1, 2, · · · ,K), (16)

−→
Nk[
−→
S ] =

−→
0 (k = 1, 2, · · · ,K), (17)

where φp
k ’s are all unknown constants. As a result, the non-

linear boundary-value problem is modified so as to be com-
posed of (13), (14), (16) and (17). The modified nonlinear

problem is numerically solved for
−→
S and {−→φk}Kk=1.

The Newton method is applied to the modified non-
linear problem. In the Newton method, the numerical so-

lution
−→
S is iteratively determined by using the following

two steps.

1. The linear boundary-value problem:

δ
−→
G = −−→G(

−→
S ) in Ω,

δ
−→
S ∈ H(Ω̄),

δ−→γk − Δt δ
−→
φk = −(−→γk[

−→
S ] − Δt

−→
φk),

δ
−→
Nk = −−→Nk[

−→
S ],

is solved for the corrections, δ
−→
S and {δ−→φk}Kk=1.

2. The approximate solutions,
−→
S and {−→φk}Kk=1, are up-

dated by
−→
S :=

−→
S + δ

−→
S ,

−→
φk :=

−→
φk + δ

−→
φk (k = 1, 2, · · · ,K).
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Here, δ
−→
G , δ−→γk and δ

−→
Nk are Fréchet derivatives of

−→
G(
−→
S ),

−→γk[
−→
S ] and

−→
Nk[
−→
S ], respectively. The above two steps are

repeated until both ‖δ−→S ‖/‖−→S ‖ and maxK
k=1 ‖δ

−→
φk‖/‖−→φk‖ be-

come negligibly small. Incidentally, the linear boundary-
value problem is solved with the finite element method.

4. Numerical Experiments
By using the virtual voltage method, a numerical code

has been developed for analyzing the time evolution of the
shielding current density. In this section, we evaluate the
performance of the virtual voltage method by means of the
code. To this end, the numerical simulation of the perma-
nent magnet (PM) method [8, 9] is performed by means of
the code.

4.1 PM method
The PM method is one of the contactless methods for

measuring jC. In the method, a cylindrical PM of radius
R and height H is placed above an HTS film so that the
symmetry axis of the magnet may be vertical to the film
surface. The magnet is first brought closer to the film and
it is subsequently moved away from the film. During the
movement of the magnet, the electromagnetic force Fz act-
ing on the film is measured.

In the PM method, the distance L between the magnet
bottom and the film surface is controlled as follows: it is
first reduced from L = Lmax to L = Lmin at a constant speed
v = (Lmax−Lmin)/τ0 and, just after that, it is increased back
to L = Lmax at the same speed.

Throughout the present study, an HTS film is assumed
to have a square cross section of side length a. Further-
more, it is assumed to contain a crack whose cross sec-
tion is a line segment connecting two points, (0,±Lc/2),
in the xy plane. In the following, the geometrical and
physical parameters are fixed as follows: a = 40 mm, jC
= 2 MA/cm2, EC = 0.1 mV/m, N = 20，Lmax = 20 mm,
Lmin = 0.5 mm, τ0 = 39 s, R = 2.5 mm, H = 3.0 mm, BF =

0.3 T, and (xPM, yPM) = (0 mm, 0 mm). Here, the symmetry
axis of the PM is denoted by (x, y) = (xPM, yPM). In ad-
dition, BF is the magnitude of the magnetic flux density at
(x, y, z) = (xPM, yPM, b/2) for L = Lmin and it is adopted as
the measure of the intensity of the PM.

4.2 Performance of proposed method
Let us first compare the performance of the proposed

method with that of the conventional method. To this end,
the PM method is numerically reproduced for the case with
(xc, yc) = (0 mm, 0 mm), Lc = 32 mm, b = 200 nm and M
= 1. By using the two methods, the values S 1(C1) of the
scalar function S 1 on the crack surface are calculated as
functions of time. The results of computations are plot-
ted in Fig. 2. This figure indicates that, for t/τ0 � 0.25,
the calculated values by the two methods are in reasonable
agreement with each other. In contrast, for t/τ0 � 0.25,
the calculated values by the conventional method begin to

Fig. 2 The time dependence of the value of S 1 on the crack sur-
face C1.

Fig. 3 Spatial distributions of the shielding current density j at
t = τ0. Here, the j-distribution is determined by using (a)
the conventional method and (b) the proposed method. In
both figures, cracks are denoted by thick line segments.

deviate from those by the proposed method. This result
suggests that, as time advances, the numerical solutions by
the two methods will become totally different. In fact, the
j-distributions by the two methods show widely different
patterns (see Figs. 3 (a) and 3 (b)).

Next, we investigate the influence of the multiple-
layer structure on the electromagnetic force Fz. To this
end, Fz-L curves are numerically determined for various
values of M and are depicted in Figs. 4 (a) and 4 (b). For
the case with b = 1 μm, Fz-L curves are not at all influenced
by the number M of layers. On the other hand, the value
of Fz depends strongly on M for the case with b = 1 mm.
This result indicates that the multiple-layer structure is in-
dispensable for calculating the shielding current density in
an HTS bulk.

5. Conclusion
We have formulated an initial-boundary-value prob-

lem of the shielding current density in an HTS film with
a multiple-layer and multiply-connected structure. In ad-
dition, we have proposed a numerical method for accu-
rately solving the problem. On the basis of the proposed
method, a numerical code has been developed for analyz-
ing the time evolution of the shielding current density. By
using the code, the performance of the proposed method is
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Fig. 4 The electromagnetic force Fz as functions of the magnet-
film distance L for the case with (a) b = 1 μm and for the
case with (b) b = 1 mm. Here, an HTS sample is assumed
to contain neither cracks nor holes.

compared with that of the conventional method.
Conclusions obtained in the present study are summa-

rized as follows.

1. As time advances, a numerical solution by the con-
ventional method will deviate from that by the pro-
posed method. This deviation is attributable to the
fact that the integral form of Faraday’s law is not ex-
actly satisfied in the conventional method. In this

sense, if an HTS film contains cracks/holes, not the
conventional method but the proposed method should
be applied to the shielding current analysis in the film.

2. A numerical solution for an HTS film is hardly af-
fected by the number of layers, whereas that for an
HTS bulk is very sensitive to the number of lay-
ers. Hence, the multiple-layer structure should be as-
sumed in analyzing the shielding current density in an
HTS bulk.
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