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The conservation of the momentum during particle collisions is important for studying the electron cyclotron
current drive (ECCD). Two momentum conserving collision models are considered applying an iterative method
and implemented to GNET code, in which the drift kinetic equation for energetic electrons are solved in 5-D phase
space. The simulation results show a good conservation of the momentum and the calculated ECCD current is
larger than the non-conserving one.
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1. Introduction
Electron Cyclotron Current Drive (ECCD) is a reli-

able methods to drive a plasma current by injecting the
electron cyclotron wave. The electron cyclotron wave is
in the GHz frequency range and the wave absorption po-
sition can be controlled locally by changing the magnetic
field strength. Consequently, ECCD can control current
profile locally and has been applied for toroidal devices to
keep the current profile, to stabilize MHD instabilities and
to cancel the bootstrap current in helical systems.

In order to study the physics of ECCDs, we have
simulated the current drive by Electron Cyclotron Heating
(ECH) on the Heliotron J device using the GNET code [1].
GNET solves the drift kinetic equation for energetic parti-
cles in 5D phase space. It has been developed for transport
study of high energy electrons in helical systems and has
been applied to ECCD analysis in helical systems.

In a previous study [2], we simulated the current drive
in the Heliotron J and found qualitative agreement be-
tween numerical simulation and experimental measure-
ment. There are two well known ECCD mechanisms:
(1) the Fisch–Boozer effect; and (2) the Ohkawa effect
[3]. These effects drive the current in opposite directions.
The result implies that EC current is driven by the Fisch–
Boozer effect and Ohkawa effect.

In the present GNET code, the linear Monte Carlo col-
lision operator is applied. This operator expresses the col-
lisional effect between test particle and background par-
ticle only as the pitch angle scattering and energy slow
down. This operator does not express the change for the
background paricle distribution and ignore the momen-
tum transferred from the test particle to the background.
It is pointed out that conserving momentum in electron-
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electron collisions may have the effect for the current [4],
it is necessary to modify the operator to conserve momen-
tum. The Ray tracing code show a large impact of par-
allel momentum conservation for ECCD simulation [5, 6].
However, in the previous study the finite orbit and radial
drift effects are not considered because of a radially local
assumption.

In the study presented here, in order to study ECCD
quantitatively, we develop collisional operators conserving
momentum for GNET. Splitting the collisional operator
into two parts, we can consider the test particle’s momen-
tum given to the background one. Two momentum con-
serving collision operator models are considered applying
an iterative method and implemented to GNET code. We
simulate the ECCD in the Heliotron J plasma with the mo-
mentum conserving operators. The results show a good
conservation of the momentum and the calculated ECCD
current is larger than the non-conserving one.

2. Simulation Model
The GNET code can solve the linearized drift kinetic

equation as a (time–dependent) initial value problem based
on the Monte Carlo technique in 5D phase space. A tech-
nique similar to the adjoint equation for dynamic linearized
problems is used and the linearized drift kinetic equation
for the deviation from the Maxwellian background, δ f , is
solved. We can obtain the steady state solution of the dis-
tribution function by GNET. In helical system the motion
of trapped particles becomes complicated because of the
complex 3D magnetic configuration. Therefore, in order
to analyze ECH in detail on helical systems, we have to
take into account of the radial diffusion of trapped parti-
cles. Thus, we must consider the distribution function at
least in 5D phase space.

In GNET the gyrophase averaged electron distribution
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function is described as

f (x, v‖, v⊥, t) = fmax(r, v2) + δ f (x, v‖, v⊥, t), (1)

where fmax(r, v2) represents a Maxwellian depending on
the effective radius r. The linearized drift kinetic equation
can be written with the initial condition δ f (x, v‖, v⊥, t =
0) = 0 as

∂δ f
∂t
+ (vd + v‖) · ∂δ f

∂x
+ v̇ · ∂δ f

∂v
= Ccoll(δ f ) + Lorbit(δ f ) + S ql( fmax), (2)

where vd is the drift velocity and v‖(= v‖ b̂) is the parallel
velocity. The acceleration term v̇ = v̇‖ + v̇⊥ is given by the
conservation of magnetic moment and total energy. Ccoll

and Lorbit are the collision operator and the particle loss
term respectively. S ql represents the quasi-linear heating
term.

We assumed the S ql as

S ql =
1
v⊥
∂

∂v⊥

⎡⎢⎢⎢⎢⎢⎣v⊥Drf

(
v⊥
vthe

)2

× δ
(
ω − 2ωce

γ
− k‖v‖

)
∂

∂v⊥
fmax

]
, (3)

where Drf is the wave diffusion coeficient and vthe =√
2Te/me is the electron thermal velocity ω and ωce are the

EC wave frequency and the electron cyclotron frequency,
respectively k‖ = ωn‖/c is the prallel component of the
wave vector and γ = (1 − v2/c2)−1/2 is the Lorentz factor.
The delta function in Eq. (3) is approximated by the Gaus-
sian function which has the broadening factor Δ, and then,
Eq. (3) is described as

S ql = −2Drf
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(

v⊥
vthe

)4 1
π1/2Δ

× exp
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(
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Δ

)2
⎫⎪⎪⎬⎪⎪⎭ fmax

⎤⎥⎥⎥⎥⎥⎦ .
(4)

The form of S ql depends of the broading factor.
Ccoll(δ f ) represents the effect of collision between test

particles and background patricles. In previous study, we
approximated the term as linearlized collision operator and
the particle collision by the s-species (electron and ions)
were given by

Ccoll
s (δ f ) ∼ C(δ f , fmax)

=
1
v
∂

∂v

[
v2ν2E

(
vδ f +

Ts

m
∂δ f
∂v

)]

+
νsd
2
∂

∂λ
(1 − λ2)

∂δ f
∂λ
, (5)

where C(δ f , fmax) is test particle operator which represents
the collisional effect for the test particle, λ = v‖/v, and
ν2E and νsd are the energy transfer rate and the deflection
collision frequency by a background of s-species particles,
respectively.

In order to conserve the momentum, we assume the
particle collision term as

Ccoll(δ f ) = C(δ f , fmax) +C( fmax, δ f ), (6)

where C( fmax, δ f ) is the field particle operator which rep-
resents the collision effect for the background particles. In
this study we consider two models. One is very easy to
implement but it does not include the information in the
velocity space. We named it as the “simple” model. The
other includes all information in the velocity space, but it
is now being implemented. We named it as “velocity de-
pendent” model.

In the simple model, we assume a high speed limit and
C( f) is expressed as

C( fmax, δ f ) = p(x, v) fmax, (7)

where p(x, v) is a function of the real space coordinate x
and the velocity v. p(x, v) is determined by calculating
the conservation low of the energy and momentum. After
some calculations, we obtain

p(x, v) = v · p(x) + λ(x)

⎛⎜⎜⎜⎜⎝ v2

v2
the

− 3
2

⎞⎟⎟⎟⎟⎠ , (8)

where

p(x) = − 2

n0v2
the

∫
vC(δ f , fmax)dv, (9)

λ(x) = − 2

3n0v2
the

∫
v2C(δ f , fmax)dv, (10)

where n0 means the density of background electrons.
Once p(x, v) is obtained from Eq. (8), we can calculate
C( fmax, δ f ) which compensates the lost momentum and en-
ergy from test particle. Then we can consider C( fmax, δ f )
as a new source–sink term.

In the GNET code, if we iteratively calculate until δ f
converges, we obtain a final profile of C( fmax, δ f ). We la-
bel the steady state solution obtained by using S ql as δ f0
and use C( fmax, δ f0) which becomes a new source term.
The steady state solution of this source term is δ f1. Obtain-
ing δ f1, we can consider the conservation of momentum
when we calculate δ f0. However the test particle lost the
momentum due to the collision with background plasma
in the process of calculating δ f1. Therefore we iteratively
calculate δ fn (n is the natural number) as

∂δ f0
∂t
+ (vd + v‖) · ∂δ f0

∂x
+ v̇ · ∂δ f0

∂v
−C(δ f0, fmax)

= S ql( fmax) + Lorbit(δ f ), (11)
∂δ f1
∂t
+ (vd + v‖) · ∂δ f1

∂x
+ v̇ · ∂δ f1

∂v
−C(δ f1, fmax)

= C( fmax, δ f0) + Lorbit(δ f ),
...,

until the lost momentum approaches almost to zero. At
the same time we evaluate the momentum which the test
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particle lost and calculate the momentum loss rate from
them. We stop the iteration when the momentum loss rate
becomes small sufficiently. After the iterative method, we
obtain the conserving momentum distribution function by
calculating

∑n
i δ fi.

3. Simulation Result
In this study we consider the magnetic configuration,

heating and plasma parameters as the previous paper [2].
Various magnetic configurations are capable in Heliotron J
device by changing the ratio of coil currents. Here we con-
sider bumpiness εb, which is the parameter characterizing
magnetic configurations given by

εb = B04/B00, (12)

where Bmn represents the Fourier component of the mag-
netic field strength in Boozer coordinates, and m and n
are the poloidal and toroidal mode numbers, respectively.
We assume the configuration εb = 0.01 at the magnetic
flux surface ρ = 0.67. The radial heating point is set
to (ρ0, φ0, θ0) = (0.1, 45◦, 0◦). We also set the parame-
ters describing the EC resonance condition as follows: EC
wave frequency is 70 GHz, 2ωce/ω = 0.98, n‖ = 0.44 and
Δ = 1.0× 10−3. Figure 1 shows the magnetic field strength
along the magnetic axis. Fixing the toroidal angle of heat-
ing point as φ0 = 45◦, EC power is deposited at the top of
the ripple in this configuration.

We run the GNET iteratively and obtain the steady
state solution, δ f . Figure 2 (a) shows the firstly obtained
distribution function. The distribution becomes asymmet-
ric in v‖ at the high energy region. This is because many
ECRH accelerated electrons hardly become trapped and
the collisional relaxtion of the electron deficit in low en-
ergy region is faster than that of the accelerated electrons.
As a result, the excess of electrons with positive v‖ occured
and it is found that the negative toroidal current is driven
by the Fisch-Boozer effect. Figure 2 (b) shows the source–
sink term to conserve the momentum using the steady state
solution δ f0. Then the steady state solution δ f1 is evalu-
ated using the this source–sink term (Fig. 2 (c)) and again
the next source–sink term is evaluated (Fig. 2 (d)). In the
two source–sink terms we can see the larger distribution in

Fig. 1 The magnetic field strength along the magnetic axis.

the positive v‖ region and this means the lost momentum
have large effect in this region.

Figure 3 shows the momentum loss rate at the each
iterative calculation in the simple model. We evaluate the
momentum loss at each calculation, and define the momen-
tum loss rate as ploss = (p0 − pn)/(p0), where p0 is the
momentum lost by test particle at first calculation and pn

represents one at the n th iterative caluculation. Figure 3
shows the momentum loss decreases as the iterative calcu-
lation advanced and dropped less than 5% of lost momen-
tum than initial simulation. The calculated ECCD current
of the simple model is −20.1 kA and the non-conserving
one is −18.4 kA. We can see the calculated ECCD current

Fig. 2 Flux averaged distribution function of (a) δ f0, (b) source–
sink term C( fmax, δ f0), (c) δ f1 and (d) source–sink term
C( fmax, δ f1). Increase (δ f+) and decrease (δ f−) area from
the Maxwellian are colored with red and blue, respec-
tively. These results are calculated in ne = 0.5×1019 m−3,
Te = 1.0 keV, where ne is electron density and Te is elec-
tron temperature.
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Fig. 3 The momentum loss rate at each iterative calculation.

is larger by 9.2% than that of non-conserving one.

4. Development of Velocity Dependent
Model
Though the simple model conserves the momentum,

it does not include the exact information in the velocity
space. Therefore it is necessary to implement the more ex-
act model. The velocity dependent model is derived from
the Fokker–Planck collisional term directly, so it includes
exact information more than the simple one.

The field particle operator can be expressed using
Legendre polynominals Pn(cos θ) as

C( fmax, δ f ) =
∞∑

n=0

Cn( fmax, δ f (n)(v))Pn(cos θ), (13)

where v is the total velocity of an electron and θ represents
the pitch angle. Introducing the Trubnikov-Rosenbluth po-
tential and define u = cos θ to simplfy [7, 8], we can de-
scribe field particle term Cn( fmax, δ f (n)(v)) as

Cn( fmax, δ f (n)(ve)) = Λe/e fmax

∞∑
i=0

Pi(ve)
[
δ f (n)(ve) (14)

+2
∫ ve

0
u2δ f (n)(u)

{(
n+

ui+2

vi+1
e
− n−

ui

vi−1
e

)
− 1

2i + 1
ui

vi+1
e

}
du

+ 2
∫ ∞

ve

u2δ f (n)(u)

{(
n+

vi+2
e

ui+1
− n−

vi
e

ui−1

)
− 1

2i + 1
vi

e

ui+1

}
du

]
,

where n+ = (i + 1)(i + 2)/(2i + 1)(2i + 3), n− = (i −
1)i/(2i − 1)(2i + 1), ve = v/vthe. Λe/e represents the am-
plitude of field particle term and in this paper it is assumed
as Λce4/m2

eε
2
0 , where Λc is coulomb logarithm, e is charge,

me is mass of an electron and ε0 is permittivity in vacuume.
In order to obtain the field particle term Cn( fmax, δ f (n)(v))
which is determined by the obtained pertubed distribution
function δ f (n)(v). We can iteratively calculate δ f (n)(v) in
the same way with the simple model case. After the iter-
ative method, we calculate the complete collision operator
according to Eqs. (6) and (13).

Figure 4 shows the first two distribution functions and
field particle terms in this procedure. The firstly obtained
distribution function generates the first field particle term
C0( fmax, δ f (0)(v)) (Fig. 4 (a)). Then the second distribution

Fig. 4 Flux averaged distribution function of (a) field particle
term C0( fmax, δ f (0)(v)), (b) δ f (1) and (c) field particle term
C1( fmax, δ f (1)(v)).

function (Fig. 4 (b)) is calculated from the field particle
term and the cycle is repeated (Fig. 4 (c)).

The velocity dependent model (Fig. 4) shows the quli-
tatively similar result in the velocity space. The field parti-
cle terms (Figs. 4 (a), (c)), which correspond to the source–
sink term in the simple model, show the distribution func-
tion will be increased at negative v‖ area in high energy
region. The steady state solution of field particle term
(Fig. 4 (c)) shows the distribution function is increased at
positive v‖ area, and it means the lost momentum have
large effects in this area. The velocity dependent model
gives the more exact information in the velocity space,
but we have not yet finished implementing this model to
GNET.

5. Conclusion
In order to study the ECCD physics on helical plas-

mas, we have simulated the current drive by ECH in
toroidal plasmas using GNET. To evaluate the EC current
quantitatively correct, we have improved the collision op-
erator of GNET to conserve the momentum. We have im-
plemented two models; the simple and velocity dependent
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models. It is easy to implement the simple model and we
obtained ECCD current with the momentum conserving.
However it does not include the exact information in the
velocity space. Therefore we are implementing the veloc-
ity dependent model which is expected to include the exact
information in the velocity space.
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