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One of the simplest self-consistent models of a plasma is single-fluid magnetohydrodynamic (MHD) equi-
librium with no bulk fluid flow under axisymmetry. However, both fluid flow and non-axisymmetric effects can
significantly impact plasma equilibrium and confinement properties: in particular, fluid flow can produce profile
pedestals, and non-axisymmetric effects can produce islands and stochastic regions. There exist a number of
computational codes which are capable of calculating equilibria with arbitrary flow or with non-axisymmetric
effects. Previously, a concept for a code to calculate MHD equilibria with flow in non-axisymmetric systems was
presented, called the KITES (Kyoto ITerative Equilibrium Solver) code [D. Raburn and A. Fukuyama, Plasma
Fusion Res. 7, 240318 (2012)]. Since then, many of the computational modules for the KITES code have been
completed, and the work-in-progress KITES code has been used to calculate non-axisymmetric force-free equi-
libria [D. Raburn and A. Fukuyama, Proceedings of the 9th EPS Conference on Plasma Physics, Stockholm,
Sweden (2012)]. Additional computational modules are required to allow the KITES code to calculate equilibria
with pressure and flow. Here, the authors report on the approaches used in developing these modules and provide
a sample calculation with pressure.
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1. Introduction
The concept for the KITES code was presented in Ref.

[1,2]. Four major hurdles were identified, which can be ex-
pressed as: 1) Calculating a field-line label and the topol-
ogy of the plasma; 2) Solving the inhomogeneous mag-
netic differential equation (IMDE) (B · ∇ f = g � 0); 3)
Handling the sonic discontinuity; and, 4) Working around
the hyperbolicity of single-fluid MHD equilibria with gen-
eral flows under adiabatic closure. The first two hurdles
have essentially be cleared, but, since publication of the
concept, a complication has been identified for each: A)
Calculating a modified field-line label near separatrices to
have continuous derivatives of the free profiles; and, B)
Accurately solving the IMDE in stochastic regions.

Complication A) is addressed in Sec. 2.
For complication B), if possible, IMDEs in stochastic

regions should be recast in to homogeneous form. In the
stationary case, there is no IMDE in stochastic regions, so
this is not a problem. The work-in-progress KITES code
is capable of calculating stationary MHD equilibria with
pressure, and a sample calculation is presented in Sec. 3.

Turning out attention to flowing equilibria, complica-
tion B) has necessitated some change to the KITES con-
cept. In the case with purely parallel flow and adiabatic
closure, we have found that it is indeed possible to avoid
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having to solve an IMDE in stochastic regions, so long as
all of the current inside the plasma is carried by the plasma
itself. A suitable formulation for such equilibria is pre-
sented in Sec. 4.

2. Island Modified Field-Line Label
KITESmakes use of a field-line label, ψ. On each field

line which constitutes a good flux surface, we take ψ to be:

ψ(line) =
√

Vgood(line)/Vgood LCFS (1)

where Vgood is the amount of “good” volume inside a good
flux surface (total volume minus volume inside islands and
stochastic regions) and Vgood LCFS is the good volume in-
side the last closed flux surface. Inside islands and stochas-
tic regions, we take ψ to be the value on the separatrix. ψ is
calculated by following several trial lines for many toroidal
circuits and applying a heuristic to the puncture points on
each φ = cnst plane to determine if they form a good flux
surface; this information is then interpolated to the fixed
(R,Z, φ) grid.

Near a magnetic island, ∇ψ may be discontinuous or
infinite. Under a simple model of an island, going out from
the magnetic axis towards an o-point, ψ ∼ ψsepx − cδ1/2,
where ψsepx is the value of ψ on the separatrix, c is some
constant, and δ is the distance from the separatrix. Because
the finite-differencing in KITES is not designed to handle
discontinuities, we wish to construct a modified ψ near the
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island such that it is continuous in physical space. Based
on the size of the island, we pick some ψ0 and ψ1 with
ψ0 < ψsepx < ψ1 and calculate an “island modified” (isl
mod) ψ in that region.

ψisl mod = ψsepx −
(
ψsepx − ψ0

)
F

(
ψsepx − ψ
ψsepx − ψ0

)
(2)

ψisl mod = ψsepx +
(
ψ1 − ψsepx

)
F

(
ψ − ψsepx

ψ1 − ψsepx

)
(3)

where Eq. (2) is for ψ0 < ψ < ψsepx, Eq. (3) is for ψsepx <

ψ < ψ1, and F(X) depends on the desired degree of conti-
nuity:

F(X) ≡
⎧⎪⎪⎨⎪⎪⎩

3X3 − 2X4 for C1

15X5 − 24X6 + 10X7 for C2
(4)

3. Calculation of Stationary Equilib-
ria with Pressure

3.1 Formulation and numerical algorithm
First, we break up B and j into “applied” and

“plasma” parts (B = Bappl + Bplas, etc) and break up jplas

in to parallel and perpendicular parts: jplas = λB + jplas⊥.
The governing equations can be written:

B · ∇p = 0 (5)

jplas⊥ = (B × ∇p) /B2 (6)

B · ∇λ = −∇ · jplas⊥ (7)

Bplas = μ0[∇×]−1 jplas (8)

with the boundary condition Bplas → 0 at ∞. We use p =
fp(ψisl mod C2) and λ = fλ(ψ) + λvar for some fp and fλ,
where λvar must satisfy:

B · ∇λvar = −∇ · jplas⊥ (9)

〈λvar〉 = 0 (10)

where 〈...〉 indicates the average [ (minval + maxval)/2 ]
over the field-line.

The homogeneous magnetic differential equation for
p [Eq. (5)] is solved everywhere by calculating ψisl mod C2

as in Sec. 2 and applying the given fp. (Note that, because
B ·∇ψisl mod C2 = 0 by construction, B ·∇p = 0 is satisfied.
For more information, see Ref. [1].)

Turning our attention to λvar, observe that, inside is-
lands and stochastic regions: ψ = cnst =⇒ p = cnst =⇒
jplas⊥ = 0 =⇒ B·∇λvar = 0 =⇒ λvar = 0. Hence, there is
no no need to solve the inhomogeneous magnetic differen-
tial equation for λvar [Eq. (9)] inside islands and stochastic
regions. On good field lines, we calculate λvar by integrat-
ing along the field line:

λvar(l + dl) = λvar(l) − dl
(
∇ · jplas⊥

)
/B + cnst. (11)

where l is the length along the field line. When solving
Eq. (11), we start on the outboard mid-plane at φ = 0 and

temporarily set λvar(0) = 0; after many circuits, we calcu-
late the average of the temporary λvar then add a constant to
make the average zero. (Note that this method of solving
the IMDE is simpler than the method proposed in Ref. [1].)

3.2 Sample calculation
We now present a sample calculation. The applied

vector potential (∇ × Aappl = Bappl) is:

RAappl = 10−3F(r) [1 + 5F(r) cos(3θ)]

Z R̂ + 1
5 r2 cos(φ)

[
cos(θ) Ẑ − sin(θ) R̂

]
(12)

where r ≡ √
(R − 4)2 + Z2, θ ≡ atan2(Z,R − 4), and

F(r) ≡ [r2(1 − r2)2]2. This field has a 3/0 island and
a radial squeeze/expansion with varying φ, as shown in
Figs. 2 and 3. Note that jappl � 0. The free profiles are:
fλ(ψ) = λ0(1 − ψ4)2 and fp(ψislmod C2) = (1 − ψ4

islmod C2)8

with λ0 = 5 × 10−5 and p0 = 8 × 10−11. The vacuum
vessel cross-section is square: R = 3 ∼ 5, Z = −1 ∼ 1.
The (R,Z, φ) cylindrical mesh is over the range (2.9 ∼
5.1, − 1.1 ∼ 1.1, 0 ∼ 2π) with 101× 101× 50 grid points.
(101× 101 in the RZ plane gives a mesh spacing on the or-
der of typical ion gyroradius. 50 grid points in φ was cho-
sen anticipating that, when taking the Fourier transform of
a quantity, only a small fraction of the power would be in
the upper half of the spectrum; this was verified a poste-
riori, with the higher modes of |Bplas| contributing to only
2.5 × 10−5 of the total.)

Fig. 1 Plot of L2 residual vs time for sample calculation.

Fig. 2 Contour plot of ψ for the applied field on the plane φ = 0.

2402030-2



Plasma and Fusion Research: Regular Articles Volume 8, 2402030 (2013)

Fig. 3 Contour plot of ψ for the applied field on the plane φ = π.

Fig. 4 Contour plot of equilibrium ψ on the plane φ = 0.

Fig. 5 Contour plot of equilibrium ψ on the plane φ = π.

The calculation was run on a single core of an Intel
Core i5-2400 3.1GHz and converged in 28 minutes with 6
iterations with no relaxation, from a residual of 3× 10−7 to
1 × 10−12, as shown in Fig. 1. The equilibrium ψ (Fig. 6),
λ (Fig. 7), and p (Fig. 8) are shown in the remaining fig-
ures. From Figs. 4 and 5, observe that the magnetic axis
shifts inward and the shape of the magnetic surfaces near
the axis are deformed, but the impact of toroidal variation
is unchanged. From Fig. 7, observe that the pressure (via
λvar) makes a large contribution to λ.

Fig. 6 Plot of equilibrium ψ and ψislmod C2 along the mid-plane
at φ = 0.

Fig. 7 Plot of equilibrium λavg ≡ fλ, λvar, and λtot ≡ λ = fλ+λvar

along the mid-plane at φ = 0.

4. Formulation of Equilibria with
Purely Parallel Flow
Define:

MS ≡ v/CS =

√
miv2/(γT ) (13)

MA ≡ v/VA =

√
μ0minv2/B2 (14)

τ ≡ γ
γ−1 p/nγ (15)

ω ≡ v‖n/B (16)

κ ≡ 1
2 miω

2 (17)

E ≡ γ
γ−1 T + K = γT

(
1
γ−1 +

1
2 M2

S

)
(18)

where T ≡ p/n and K ≡ 1
2 miv2. As in the stationary case,

we use λ ≡ j‖/B and let ψ be a field-line label.
The equations for conservation of particles, adiabatic

equation of state, and parallel force-balance become:

B · ∇ω = 0 (19)

TωB · ∇ log(τ) = 0 (20)

B ·
[
n∇E − (γ − 1)−1 p∇ log(τ)

]
= 0 (21)

Requiring B � 0 inside the plasma, it is clear that
ω = fω(ψ) and κ = fκ(ψ) = 1

2 mi f 2
ω(ψ) for some function fω.
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Fig. 8 Plot of equilibrium p along the mid-plane at φ = 0.

Further requiring T � 0 andω � 0, it is clear that τ = fτ(ψ)
and E = fE(ψ) for some functions fτ and and fE. (More
accurately, because derivatives of all of these functions will
enter in to the equations, they should be taken as explicit
functions of ψislmod.) Now, consider the case ω = 0: this is
the stationary case, in which p = fp(ψ); fE and fτ are not
independently determined, and we are free to take both to
be functions of ψ. We will not attempt to handle the case
ω � 0, T = 0.

The definition of E yields the Bernoulli equation,
which relates the density, magnetic topology, and magnetic
field strength:

E = τnγ−1 + κB2n−2 (22)

As in the axisymmetric case, for a given ψ and B, Eq. (22)
can have zero, one, or two real solutions for n, assuming
τ � 0 and κB2 � 0 [3]. For KITES, we define the crite-
ria in terms of a critical energy Ecrit(ψ, B), which can be
conveniently written:

[
Ecrit(ψ, B)
γ + 1

]γ+1

=

[
τ(ψ)

2

]2 [
κ(ψ)B2

γ − 1

]γ−1

(23)

There are no real solutions for n when E < Ecrit(ψ, B).
Turning to the perpendicular plasma current density,

we write derivatives of B in terms of μ0 j and∇B and, using
Eq. (22), derivatives of n in terms of ∇ψ and ∇B:

jplas⊥ =
M2

A

1 − M2
A

jappl⊥ + B ×
(
Fψ∇ψ + FB∇B

)
(24)

Fψ ≡ p

(1 − M2
A)B2

[
Fψ1 + Fψ2 + Fψ3

]
(25)

Fψ1 ≡ 1
γ − 1

(
γ

1
E

dE
dψ
− 1
τ

dτ
dψ

)
(26)

Fψ2 ≡
(
γ

γ − 1

) ⎛⎜⎜⎜⎜⎝ M2
S

1 − M2
S

⎞⎟⎟⎟⎟⎠
(

1
E

dE
dψ
− 1
τ

dτ
dψ

)
(27)

Fψ3 ≡
(
γ

2

) ⎛⎜⎜⎜⎜⎝ M4
S

1 − M2
S

⎞⎟⎟⎟⎟⎠
(

1
E

dE
dψ
− 1
κ

dκ
dψ

)
(28)

FB ≡ p

(1 − M2
A)B2

⎡⎢⎢⎢⎢⎣ −γM4
S

1 − M2
S

1
B

⎤⎥⎥⎥⎥⎦ (29)

The M2
A jappl⊥/(1 − M2

A) term in Eq. (24) is due to any ap-
plied current, and the term will typically be zero.

Note that, unlike in the stationary case, ∇ · jplas⊥ typ-
ically does not vanish inside stochastic regions. Taking
∇ψ = 0 and dropping the jappl term:

∇ · jplas⊥ = μ0λFBB · ∇B (30)

where we have used the fact that FB = FB(ψ, B, n(ψ, B))
via Eq. (22). Assuming none of the terms are zero, we
cannot accurately solve the IMDE for λ [Eq. (7) or (9)]
in stochastic regions. Additionally, solving the IMDE for
λ inside magnetic islands would require accurate deter-
mination of the flux surfaces inside islands, which is not
presently done in KITES.

However, using Eq. (22), integration rules, and vari-
able substitution, Eq. (7) can be cast in to a homogeneous
form by defining GB:

GB(ψ, B, n) ≡
∫
−μ0FB(ψ, B, n)dB

∣∣∣∣∣
ψ=cnst

(31)

B · ∇ (
log λ −GB

)
= 0 (32)

where n = n(ψ, B) per Eq. (22). The integral can be eval-
uated by changing the variable of integration from B to n,
followed by much algebra:

GB = − log(1 − M2
A) + cnst (33)

Hence, inside stochastic regions, λ must have the form:

λ = λ0/
(
1 − M2

A

)
(34)

For each island and stochastic region, λ0 should be taken
to make λ as continuous as possible across the separatrices,
such as by minimizing 〈[λ0/(1 − M2

A) − fλ − λvar]2〉 on the
separatrices.

5. Summary
The first two hurdles in the KITES concept have been

cleared, though, in the case with cross-field flows, there
may be some complications for accurately solving the in-
homogeneous magnetic differential equation in stochastic
regions. However, we have shown that this is not a prob-
lem for single-fluid MHD equilibria with purely parallel
flows. The work-in-progress KITES code has been used to
calculate stationary single-fluid MHD equilibria.
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