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To investigate a condition of the numerical stability of an electromagnetic wave propagation simulation using
the meshless time-domain method (MTDM), a 1-dimensional (1D) TM mode discretized by the MTDM has been
analyzed theoretically. Under some assumptions, the Courant condition for the 1D MTDM has been derived.
The Courant condition does not depend on the radial basis functions required to generate shape functions of the
MTDM. In addition, the Courant condition for the 1D MTDM is equivalent to that for the finite-difference time-
domain method. Based on the result for the 1D case, the Courant condition for the 2-dimensional (2D) MTDM
is predicted. Furthermore, for the case where the predicted Courant condition is satisfied, the numerical stability
of 2D MTDM has been investigated numerically.
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1. Introduction
The finite-difference time-domain method (FDTD)

has generally been applied for electromagnetic wave prop-
agation simulations, and it has yielded many impressive
results. In numerical simulations employing the FDTD,
the numerical domain is divided into rectangular meshes.
However, it is difficult to accurately represent an arbitrary-
shaped domain using only rectangular meshes.

On the other hand, many kinds of meshless methods
such as the element-free Galerkin method [1], the mesh-
less local Petrov-Galerkin method [2] and the meshless
radial point interpolation method (RPIM) [3] have been
proposed, and applied to numerical simulations in various
fields, including plasma physics and fusion science. In the
meshless methods, the shape functions are generated from
nodes, i.e., the meshes are no longer necessary.

Recently, the meshless method based on the RPIM has
been applied to electromagnetic wave propagation simula-
tions [4]. This method is called here the meshless time-
domain method (MTDM). In the MTDM, a domain is dis-
cretized by the shape functions of the RPIM. Namely, the
MTDM does not require the rectangular meshes, which are
required in the FDTD. Hence, the node alignment of the
MTDM is more flexible than that of the FDTD. However,
in the MTDM, the relation between the numerical stabil-
ity and the node alignment has not been investigated suffi-
ciently.

The purpose of the present study is to investigate a
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condition of the numerical stability of the MTDM in elec-
tromagnetic wave propagation simulations. To this end, a
1-dimensional (1D) Transverse Magnetic (TM) mode dis-
cretized by the MTDM is analyzed theoretically.

2. Shape Functions of the RPIM
In the MTDM, the leap-frog method is employed to

discretize the time domain, and the space domain is dis-
cretized by the shape functions of the RPIM [4]. The shape
functions are derived by the following procedures.

First, the nodes, x1, x2, . . . , xN , together with the ra-
dial basis functions (RBFs), w1(x),w2(x), . . . ,wN(x), on
each of the nodes are assigned in the domain Ω and on
the boundary ∂Ω, where N is the number of nodes, and
wi(x) ≡ w(|x − xi|) (i = 1, 2, . . . ,N). In the RPIM, it is
assumed that the solution u(x) can be expanded by

u(x) =
[
wT(x), pT(x)

]
G−1

[
ue

0

]
= φT(x)ue. (1)

Here, the vectors, w(x), p(x),ue and φ(x) are, respectively,
defined by

w(x) ≡ [w1(x),w2(x), . . . ,wN(x)]T, (2)

p(x) ≡ [p1(x), p2(x), . . . , pM(x)]T, (3)

ue ≡ [ue
1, u

e
2, . . . , u

e
N]T, (4)

φ(x) ≡ [φ1(x), φ2(x), . . . , φN(x)]T, (5)

where φk(x) denotes a shape function corresponding to the
kth node xk (k = 1, 2, . . . ,N), and M is the number of com-
ponents of p(x). In this study, for the 2-dimensional (2D)
case, M = 3 is adopted, i.e., p(x) = [1, x, y]T, whose com-
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ponents are coefficients of a degree-one polynomial. In
addition, the matrix G ∈ R(N+M)×(N+M) is defined by

G ≡
[

W P
PT O

]
, (6)

where W ≡ [w(x1),w(x2), . . . ,w(xN)]T and P ≡ [p(x1),
p(x2), . . . , p(xN)]T. From (1), the explicit form of the
shape functions φk(x) (k = 1, 2, . . . ,N) and these deriva-
tives can be expressed by

φk(x) =
N∑

i=1

wi(x)ḡi,k +

M∑
j=1

p j(x)ḡN+ j,k, (7)

∂φk

∂x
(x) =

N∑
i=1

∂wi

∂x
(x)ḡi,k +

M∑
j=1

∂p j

∂x
(x)ḡN+ j,k, (8)

∂φk

∂y
(x) =

N∑
i=1

∂wi

∂y
(x)ḡi,k +

M∑
j=1

∂p j

∂y
(x)ḡN+ j,k, (9)

where ḡi,k denotes the (i, k)-element of the matrix G−1. It
must be noted here that the shape functions have the Kro-
necker delta function property as follows [3]:

φi(x j) =

{
1 for i = j,
0 for i � j.

(10)

3. Meshless Time-Domain Method
For simplicity, we consider 2D electromagnetic wave

propagation of the TM mode whose governing equations
are described by

ε
∂Ez

∂t
= − σEz +

∂Hy

∂x
− ∂Hx

∂y
, (11)

μ
∂Hx

∂t
= − ∂Ez

∂y
, (12)

μ
∂Hy

∂t
=
∂Ez

∂x
, (13)

where Ez denotes the z component of the electric field, and
Hx and Hy denote the x and y components of the magnetic
field, respectively. In addition, ε, σ, and μ denote the per-
mittivity, electrical conductivity, and magnetic permeabil-
ity, respectively.

To discretize (11), (12), and (13), nodes xE
i (i =

1, 2, . . . ,NE) for Ez and xH
i (i = 1, 2, . . . ,NH) for Hx and Hy

are first aligned in a domain, where NE denotes the number
of nodes for Ez, and NH denotes the number of nodes for
Hx and Hy. As mentioned in Section 2, in the MTDM,
the leap-frog method is employed to discretize the time
domain. In addition, the space domain is discretized by
the shape functions of the RPIM. The discretized forms of
(11), (12) and (13) are as follows:

En
z,i =

(
ε

Δt
− σ

2

)
En−1

z,i +

NH∑
j=1

H
n− 1

2
y, j

∂φH
j,i

∂x
−

NH∑
j=1

H
n− 1

2
x, j

∂φH
j,i

∂y(
ε

Δt
+
σ

2

) ,

(14)

H
n+ 1

2
x,i = H

n− 1
2

x,i −
Δt
μ

NE∑
j=1

En
z, j

∂φE
j,i

∂y
, (15)

H
n+ 1

2
y,i = H

n− 1
2

y,i +
Δt
μ

NE∑
j=1

En
z, j

∂φE
j,i

∂x
, (16)

where n is the time step, En
z,i ≡ En

z (xE
i ), H

n+ 1
2

x,i ≡ H
n+ 1

2
x (xH

i ),

∂φE
j,i

∂x
≡
∂φE

j

∂x
(xH

i ),
∂φE

j,i

∂y
≡
∂φE

j

∂y
(xH

i ), (17)

∂φH
j,i

∂x
≡
∂φH

j

∂x
(xE

i ), and
∂φH

j,i

∂y
≡
∂φH

j

∂y
(xE

i ). (18)

In addition, φE
j (x) denotes the shape functions correspond-

ing to xE
j ( j = 1, 2, . . . ,NE). Similarly, φH

j (x) denotes the
shape functions corresponding to xH

j ( j = 1, 2, . . . ,NH).
Note that, to derive (14), (15), and (16) from (11), (12),
and (13), respectively, the Kronecker delta function prop-
erty (10) is used, e.g., En−1

z (x) is expanded as

En−1
z (x) =

NE∑
j=1

En−1
z, j φ

E
j (x), (19)

and by substituting x = xE
i ,

En−1
z (xE

i ) =
NE∑
j=1

En−1
z, j φ

E
j (xE

i ) = En−1
z,i . (20)

In addition, an approximation Ez � (En
z + En−1

z )/2 is
adopted to derive (14) from (11). By calculating (14), (15),
and (16) in each time step, the behavior of the electromag-
netic wave propagation can be simulated.

4. Condition for Numerical Stability
In this section, to analyze a condition of the numerical

stability of the MTDM, we consider a 1D TM mode as
follows:

ε
∂Ez

∂t
=
∂Hy

∂x
, (21)

μ
∂Hy

∂t
=
∂Ez

∂x
. (22)

To discretize (21) and (22), nodes xi(i = 1, 2, . . . ,NE) for
Ez and xi+ 1

2
(i = 1, 2, . . . ,NH) for Hy are first aligned. Here,

we assume that the nodes are uniformly aligned so that
Δx = |xi − xi+1| is the same value. In addition, throughout
this section, we assume xi+ 1

2
= x+Δx/2 and NH = NE − 1.

With the above assumptions, by utilizing the leap-frog
method and the shape functions of the RPIM, (21) and (22)
are discretized as

En
z,i = En−1

z,i +
Δt
ε

NH∑
j=1

H
n− 1

2

y, j+ 1
2

∂φH
j,i

∂x
, (23)

H
n+ 1

2

y,i+ 1
2

= H
n− 1

2

y,i+ 1
2

+
Δt
μ

NE∑
j=1

En
z, j

∂φE
j,i

∂x
. (24)
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Fig. 1 Schematic view of node alignment, the evaluation point
x2, and the support radius R of an RBF for theoretically
analyzing a condition of the numerical stability. Here,
Δx = |x2 − x1| = |x3 − x2|.

To theoretically analyze a condition of the numerical sta-
bility, we determine the explicit form of the derivatives of
shape functions. To this end, in the following, we assume
that the number of evaluation points inside the support ra-
dius is 3, and x2 is the evaluation point (see Fig. 1). Under
these assumptions, ∂φ

∂x (x2) can be determined by solving
the following linear system.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1(x1) w2(x1) w3(x1) 1 x1

w1(x2) w2(x2) w3(x2) 1 x2

w1(x3) w2(x3) w3(x3) 1 x3

1 1 1 0 0
x1 x2 x3 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∂φ

∂x
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂w1
∂x
0
∂w3
∂x
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(25)

From (25),

∂φ

∂x
(x2) =

[
− 1

2Δx
, 0,

1
2Δx

, c1, c2

]T

, (26)

where c1 and c2 are constant values that are not used in
the MTDM. It must be noted here that, regardless of the
RBFs, (26) becomes the same result except for c1 and c2.
By substituting (26) into (23) and (24), these equations are
rewritten as

En
z,i = En−1

z,i +
Δt
εΔx

(
H

n− 1
2

y,i+ 1
2

− H
n− 1

2

y,i− 1
2

)
, (27)

H
n+ 1

2

y,i+ 1
2

= H
n− 1

2

y,i+ 1
2

+
Δt
μΔx

(
En

z,i+1 − En
z,i

)
. (28)

Using (27) and (28), we investigate the Courant condi-
tion for the MTDM. To this end, we assume that the input
wave is a plane wave described by

E(r, t) = E0(t)e− jk·r, (29)

H(r, t) = H0(t)e− jk·r, (30)

where j is the imaginary unit, k is the wave vector, and r
is the space vector. Here, k · r = kxx+ kyy+ kzz. After (27)
is substituted into (28), by substituting (29) and (30) into
(27) and (28), these equations are described as

En
z,0 = En−1

z,0 + j
ΔtS
ε

H
n− 1

2
y,0 , (31)

H
n+ 1

2
y,0 = H

n− 1
2

y,0 − (νΔtS )2H
n− 1

2
y,0 + j

ΔtS
μ

En−1
z,0 , (32)

where ν2 = (με)−1 and

S =

2 sin

(
kx
Δx
2

)

Δx
. (33)

Equations (31) and (32) can be rewritten as

xn = Axn−1, (34)

where

xn ≡
⎡⎢⎢⎢⎢⎢⎣ En

z,0

H
n+ 1

2
y,0

⎤⎥⎥⎥⎥⎥⎦ , A ≡
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 j
ΔtS
ε

j
ΔtS
μ

1 − (νΔtS )2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
(35)

In (34), if all eigenvalues λ of A satisfy |λ| ≤ 1, the vector
xn will be converged to a stability solution when n → ∞.
These eigenvalues are determined by solving |A − λI| = 0,
i.e.,

λ =
−b ± √b2 − 4

2
, (36)

where b ≡ (νΔtS )2 − 2. In (36), if b2 − 4 ≤ 0, that is,

(vΔtS )2 ≤ 4, (37)

is satisfied, all eigenvalues of A satisfy |λ| ≤ 1. Further-

more, in (33), since
∣∣∣∣sin

(
kx
Δx
2

)∣∣∣∣ ≤ 1 is satisfied,

|S | ≤ 2
Δx

. (38)

From (37) and (38), the Courant condition for the 1D
MTDM is determined as

νΔt ≤ Δx. (39)

From (39), we see that the Courant condition for the
1D MTDM does not depend on RBFs. In addition, it
must be noted here that, under the above assumptions, the
Courant condition for the 1D MTDM is equivalent to that
for the FDTD. Furthermore, from (39), we consider that
the Courant condition for the MTDM for 2D/3D depends
on the adjacent node distance. Namely, we predict the
Courant condition for the MTDM for 2D/3D as

νΔt ≤ min|xi − x j|. (40)

In the next section, for the case where (40) is satisfied, we
investigate the influence of the adjacent node distance to
the numerical stability for the 2D case.

5. Numerical Experiments
In this section, for the case where (40) is satisfied, nu-

merical experiments were conducted to investigate the in-
fluence of the adjacent node distance to the numerical sta-
bility of a 2D electromagnetic wave propagation simula-
tion using the MTDM. To this end, the line-shaped waveg-
uide illustrated in Fig. 2 (a) is used for this simulation. In
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Fig. 2 (a) Schematic view of a line-shaped wave guide. Here, PML and PMC denote the perfectly matched layer and perfect magnetic
conductor, respectively. In addition, Γin and Γout denote the source input line and the observation line, respectively. (b) Schematic
view of node alignment of xE and that of xH . Here, xE and xH are represented as • and ×, respectively. (c) Schematic view of
moving nodes xE

i . (d) Dependence of the amplification/damping rate rAD on the ratio xshift/Δx∗.

addition, the nodes xE
i and xH

i are uniformly aligned in al-
ternate shifts as shown in Fig. 2 (b). In this simulation, we
assume that the wave source is a sine wave whose ampli-
tude, frequency and speed are 1.0 (V/m), 1.0 × 109 (Hz)
and 299792458 (m/s), respectively. It must be noted here
that, throughout this section, we set Δt = 0.8 min|xi− x j|/ν
to satisfy (40).

As an RBF, we adopt the reciprocal multi
quadric (RMQ):

wi(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣
( |x − xi|

Ri

)2

+ 1

⎤⎥⎥⎥⎥⎥⎦
− 1

2

for |x − xi| ≤ Ri,

0 for |x − xi| > Ri,

(41)

where Ri denotes the support radius of wi(x). Each sup-
port radius Ri of wi(x) is determined so that the number of
nodes inside the support radius is at least 12.

To investigate the relation between the numerical sta-
bility and the adjacent node distance, we simultaneously
move the nodes xE

i = [xE
i , y

E
i ]T in the x-direction after

moving xE
i to xs

i = [xE
i , y

E
i + yshift]T(i = 1, 2, . . . ,NE).

For each xE
i , four types of xs

i are adopted by setting
yshift = 0.0, 0.001, 0.005, and 0.01. Here, we assume
that xE

i is moved to x̂E
i = [xE

i + xshift, yE
i + yshift]T as

shown in Fig. 2 (c). For each yshift, the dependence of the
amplification/damping rate rAD in the line-shaped waveg-
uide on a ratio xshift/Δx∗ is shown in Fig. 2 (d), where
Δx∗ = Δx/2 and

rAD ≡
〈∫

Γout

Ez d


〉
t

/ 〈∫
Γin

Ez d


〉
t

. (42)

Here, Γin and Γout denote the source input line and an ob-
servation line, respectively (see Fig. 2 (a)). In addition, rAD

has been calculated on Ez past the line Γout in a certain
time step. We see from Fig. 2 (d) that, for yshift = 0.0,
rAD = 1.0 can almost be maintained in xshift/Δx∗ < 0.25.
Hence, we consider that, in this range, the electromagnetic
wave propagation can be simulated stably. However, for
yshift � 0.0, rAD = 1.0 cannot be maintained in all cases

even for xshift = 0.0. It must be noted here that, in all
experiments, (40) is satisfied. Nevertheless, the unstable
simulations have been observed. Hence, we consider that
there are some type of constraints between the node align-
ment for E and that for H, although we have not yet found
the concrete constraints. To stably simulate electromag-
netic wave propagation, not only the Courant condition but
also the constraints may have to be satisfied.

6. Conclusion
To investigate a condition of the numerical stability

of an electromagnetic wave propagation simulation by the
MTDM, we have analyzed a 1D TM mode theoretically.
Under some assumptions, governing equations of the 1D
TM mode have been discretized with the explicit form
of the derivatives of shape functions. By substituting the
plane wave for the discretized equations, the equations
can be rewritten by using a matrix and vectors. From the
eigenvalues of the matrix, the Courant condition for the
1D MTDM has been derived theoretically. In addition, the
Courant condition for the 2D/3D of the MTDM has been
predicted as (40), based on the theoretical result for the
1D case. In numerical experiments, electromagnetic wave
propagation in a line-shaped waveguide has been simulated
by the 2D MTDM, for cases in which (40) is satisfied.
Conclusions obtained in the present study are summarized
as follows:

1. Under the assumptions described in Section 4, the
Courant condition for the 1D MTDM was derived. In
addition, the Courant condition does not depend on
the RBFs and is equivalent to that for the FDTD.

2. Even though (40) is satisfied, the simulations may be
unstable because of inappropriate node alignment.

In future study, the relation between the node alignment
for E and that for H will be investigated to determine the
concrete constraints for stable simulations.
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