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The three-dimensional analysis of electromagnetic wave propagation using meshless time domain method
is numerically investigated. The basic concept of the Meshless Time Domain Method (MTDM) is same as
Finite Differential Time Domain (FDTD) method. In the discretizing process of the space, the shape function
of Radial Point Interpolation Method (RPIM) is adopted. Thus, MTDM can be applied to the problem in the
complex shaped domain easily. The result of computation show that the value of the damping rate decrease as
the frequency increases. Moreover, the value of the damping rate depend on the shape of waveguide.
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1. Introduction
In the Large Helical Device (LHD), the electron cy-

clotron heating device is used for plasma heating. The
electrical power that is made by the gyrotron system trans-
mits to LHD by using long corrugated waveguide, and the
waveguide is bent at right angles several times from the gy-
rotron system to LHD [1]. However, it is not clear that the
shape of curvature of the waveguide or transmission gain
of electromagnetic wave propagation theoretically.

Generally, Finite Differential Time Domain Method
(FDTD) is employed for analyzing the electromagnetic
wave propagation phenomenon [2]. However, the analytic
domain must be divided into orthogonal meshes if FDTD
is applied for the simulation.

As is well known that the meshless approach does
not require finite elements or meshless of a geometrical
structure. And various meshless approaches such as the
radial point interpolation method (RPIM) have been devel-
oped [3, 4]. And these methods are applied to a variety of
engineering fields and the fields of computational magnet-
ics. Particularly, meshless approaches based on RPIM are
applied to time dependent problems [5].

The purpose of the present study is to develop the
numerical code for analyzing a three-dimensional elec-
tromagnetic wave propagation by using MTDM. Further-
more, the relation of the waveguide size and the wave fre-
quency is also numerically investigated by using the nu-
merical code.
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2. Meshless Time Domain Method
In this present study, the shape function obtained by

RPIM is adopted for discretization with respect to space.
In the following section, we discuss about the shape func-
tion generation and discretization of Maxwell’s equation in
case of three-dimension.

2.1 Shape function of RPIM
First, we scatter N nodes x1, x2, · · · , xN in the target

domain and the boundary. We assume that the approxima-
tion function u∗(x) can be expanded as follows.

u∗(x) =
[
b(x)T , p(x)T

]
G−1

[
u
0

]
= φ(x)u. (1)

Here the vector b(x), p(x), u(x) and φ(x) are defined by

b(x) = [b1(x), b2(x), · · · , bN(x)]T , (2)

p(x) = [p1(x), p2(x), · · · , pM(x)]T , (3)

u(x) = [u1(x), u2(x), · · · , uN(x)]T , (4)

φ(x) = [φ1(x), φ2(x), · · · , φN(x)]T , (5)

where b(x), p(x), u(x) and φ(x) denote the Radial Basis
Function (RBF), the Polynomial Basis Function (PBF), ex-
pansion factor and the shape function, respectively. In the
present study, p(x) = [1, x, y]T is adopted for monomials
approximation. Furthermore, the matrix G is defined by
following equation.

G =

[
B P

PT O

]
. (6)

Here, the matrices B and P are defined by following equa-
tions.

B = [b(x1), b(x2), · · · , b(xN)]T , (7)
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P =
[
p(x1), p(x2), · · · , p(xN)

]T . (8)

Various functions are proposed for RBF [6]. In the present
study, following function is adopted for RBF.

b(xi) =

[( r
R

)2
+ 1.0

]−0.5

. (9)

Here, R denotes a support radius of the influence domain,
r is defined by r = |x − xi|. By solving the linear system
obtained from (1), the shape functions which is located on
each node are derived.

The shape function obtained by above method satisfies
following the Kronecker’s delta function property [3], and
the approximation function can be simply expressed.

φi(x j) =

{
1, i = j,
0, i � j.

(10)

2.2 Discretization by shape function
The governing equation of the three-dimensional

wave propagation phenomenon is defined by following
equations.

∂E
∂t
= −σ
ε

E +
1
ε
∇ × H, (11)

∂H
∂t
= −1
μ
∇ × E. (12)

Here, H denotes a magnetic field and E denotes electric
field. Moreover, ε, μ, andσ denote permittivity, permeabil-
ity, and electro conductivity, respectively. The basic con-
cept of MTDM is same as that of FDTD. Thus, time region
is discretized by using the Leap-Frog algorithm. Note that
we must be taken an account of the numerical stability con-
dition because the Leap-Frog algorithm is explicit method.
Taking account of the numerical stability condition, nodes
are scattered so as to satisfy the following equation.

v
Δt

min
i� j
|xi − x j| ≤ 1. (13)

Here, v denotes a wave speed and Δt denotes a step size
of time. On the other hand, the space is discretized by us-
ing the shape function obtained by RPIM. The shape func-
tion obtained by RPIM has the Kronecker’s delta function
property, and the approximation function can be expressed
briefly. Finally, following discretized equations are de-
rived.

En
x,m =α

[(
ε

Δt
− σ

2

)
En−1

x,m

+
∑

i

H
n− 1

2
z,i

∂φi

∂y
−
∑

i

H
n− 1

2
y,i

∂φi

∂z

⎤⎥⎥⎥⎥⎥⎦ , (14)

En
y,m =α

[(
ε

Δt
− σ

2

)
En−1

y,m

+
∑

i

H
n− 1

2
x,i

∂φi

∂z
−
∑

i

H
n− 1

2
z,i

∂φi

∂x

⎤⎥⎥⎥⎥⎥⎦ , (15)

En
z,m = α

[(
ε

Δt
− σ

2

)
En−1

z,m

+
∑

i

H
n− 1

2
y,i

∂φi

∂x
−
∑

i

H
n− 1

2
x,i

∂φi

∂y

⎤⎥⎥⎥⎥⎥⎦ , (16)

H
n+ 1

2
x,m = H

n− 1
2

x,m

+
Δt
μ

⎛⎜⎜⎜⎜⎜⎝
∑

i

En
y,i
∂φi

∂z
−
∑

i

En
z,i
∂φi

∂y

⎞⎟⎟⎟⎟⎟⎠ , (17)

H
n+ 1

2
y,m = H

n− 1
2

y,m

+
Δt
μ

⎛⎜⎜⎜⎜⎜⎝
∑

i

En
z,i
∂φi

∂x
−
∑

i

En
x,i
∂φi

∂z

⎞⎟⎟⎟⎟⎟⎠ , (18)

H
n+ 1

2
z,m = H

n− 1
2

z,m

+
Δt
μ

⎛⎜⎜⎜⎜⎜⎝
∑

i

En
x,i
∂φi

∂y
−
∑

i

En
y,i
∂φi

∂x

⎞⎟⎟⎟⎟⎟⎠ . (19)

Here, the parameter α is defined by following equation.

α =
1
ε

Δt
+
σ

2

. (20)

Moreover, the superscript of the variables denotes a time
step, and the subscripts of the variables denote a compo-
nent and a node number. Solving equations (14), (15) and
(16) by using a initial condition, the value of electric field is
obtained. Substituting the calculated values of electric field
to equations (17), (18) and (19) the value of magnetic field
is obrained. These equation alternately calculated, and the
time dependent behavior can be calculated.

3. Numerical Evaluations
In the present study, two types of waveguide are

adopted for the numerical evaluation, and the values of
damping rate are calculated by means of the numerical
code. The value of damping rate RD used in this study
is defined by following equation.

RD =

〈∫
Ωout

E dΩ

〉
t〈∫

Ωin

E dΩ

〉
t

. (21)

Here, E is defined by E = E2
x + E2

y + E2
z and 〈x〉t denotes

a time average of x. Ωin and Ωout denote a cross-section
of the waveguide as shown in Figs. 1, 5. Furthermore, the
Perfectly Matched Layer (PML) and the Perfect Electric
Conductor (PEC) are adopted for absorbing boundary con-
dition and boundary condition. PMLs are imposed at edges
of waveguide and PECs are imposed on side of the waveg-
uide. (see Figs. 1, 5). The parameters that used in this
study are also shown in Table 1. Note that the value of sup-
port radius R is determined a number of nodes contained
inside of influence domain are to be 12.

3.1 Cuboid waveguide
Let us first investigate the wave propagation phe-

nomenon in the cuboid waveguide by means of MTDM,
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Table 1 Physical parameters for the calculation. Here λ denotes
a wavelength.

Input Wave Sine Wave
Amplitude 1.0 [V/m]
Frequency 15.0 [GHz]

Wave speed 3.0 × 108 [m/s]
Distance of neighboring node 20/λ

Number of layer for PML 16
Dimension of PML 4

Reflectance factor of PML −80 [dB]

Fig. 1 Conceptual diagram of the rectangular waveguide.

Fig. 2 The node alignment of the electric field and the magnetic
field in the cuboid.

and the values of damping rate are numerically evaluated.
The evaluation target is the cuboid waveguide, and the con-
ceptual diagram of the analytic model is shown in Fig. 1. In
addition, the node alignment of the electric field E and the
magnetic field H is shown in Fig. 2. The node alignment
of the electric field and the magnetic field is designed on
the basis of staggered mesh that used in standard FDTD.
The distribution of Ez in the cuboid waveguide is shown in
Fig. 3.

The values of damping rate RD in the cuboid waveg-
uide are plotted as a function of the width and height of
waveguide in Fig. 4. We see from this figure that the value
of RD decrease as the frequency increases in both cases. It
can be also seen from the figure that the reduction of RD

is remarkable in case of 30 [GHz]. In other words, low
frequency is hardly affected by the shape of waveguide.

Fig. 3 The distribution of Ez in the cuboid waveguide in case of
L = 0.1 [m], W = 0.01 [m], H = 0.01 [m].

Fig. 4 The values of damping rate RD are plotted as a function
of the width W and height H of waveguide. Note that the
value of L is fixed as L = 0.2 [m], and the values of W, H
are satisfied W = H.

Fig. 5 Conceptual diagram of the cylinder.

3.2 Cylinder waveguide
Next, we investigate the wave propagation phe-

nomenon in the cylinder waveguide. The conceptual di-
agram of the evaluation target is shown in Fig. 5. The node
alignment of the electric field E and the magnetic field H
is also shown in Fig. 6. The cross-section of the analytic
region of waveguide is the area circle inscribed in a square
area (see Fig. 5). The distribution of Ez in the cylinder
waveguide is shown in Fig. 7. We can see from this fig-
ure that the distribution of Ez in the cylinder waveguide is
different from that of cuboid waveguide. This is because
the shape of the wave is changed by the reflection at the
corner of the cuboid waveguide. On the other hand, the ef-
fect of the reflection decrees by the shape of waveguide in
case of cylinder waveguide.

Finally, we evaluate the values of damping rate RD in
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Fig. 6 The node alignment of the electric field and the magnetic
field in the cylinder.

Fig. 7 The distribution of Ez in the cylinder in case of L =
0.1 [m], W = 0.01 [m], H = 0.01 [m].

Fig. 8 The values of damping rate RD are plotted as a function
of the width and height of waveguide. Note that the value
of L is fixed as L = 0.2 [m], and the values of W, H are
satisfied W = H.

the cylinder waveguide, and the values of RD are plotted as
a function of the width and height of waveguide in Fig. 8.
We see from this figure that the value of RD decrease as
the frequency increases in both cases. This behavior is
almost same as that of cuboid waveguide. However, the
behavior of decreasing in cylinder waveguide is found to
be smoother compared to the behavior of cuboid waveg-
uide. This is considered to be result of the influence of the
reflection.

4. Conclusion
We have developed the numerical code for three-

dimensional analysis of electromagnetic wave propaga-
tion by using MTDM. By using the code, the influence of
waveguide’s shape on damping rate.

Conclusions obtained in the present study are summa-
rized as follows.

• The values of RD decrease as frequency increases in
case of cuboid waveguide and cylinder waveguide.
• The decreasing phenomenon of the damping rate

showed in Fig. 4 and Fig. 8 can be explained as fol-
lows. The values of damping rate are almost same if
the values are plotted as a function of λ/L. That is to
say, the value of damping rate depend on the λ and
size of width and height of waveguide. In addition,
the optimal size of width and height of waveguide is
λ/2.
• The behavior of decreasing in cylinder waveguide is

found to be smoother compared to the behavior of
cuboid waveguide. Because the length of the ra-
dial is constant in cylinder waveguide. On the other
hand, the length of the radial is non-constant in cuboid
waveguide, and the propagation behavior is affected
by reflection from the edge of the waveguide. From
these reasons, the distribution of the electric field
in cylinder waveguide is more smooth than that of
cuboid waveguide.
• On the whole, linear waveguide should be cylinder

waveguide.
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