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Guiding-center equations for relativistic particles are presented in axisymmetric toroidal geometry using
Boozer coordinates. Effects of slow equilibrium changes are included for describing electron acceleration due
to the induction field, which is a fundamental process of runaway electron generation during disruptions. For
a consistent treatment of the runaway orbit in finite-pressure plasmas, the equations are given in both canonical
and noncanonical forms by retaining the radial covariant component of the equilibrium magnetic field. For this
purpose, the Lagrangian formulation by White and Zakharov [R.B. White and L.E. Zakharov, Phys. Plasmas 10,
573 (2003)] is applied to axisymmetric equilibria with slowly varying magnetic-flux functions.
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1. Introduction
Guiding-center calculations of particle motion [1] are

a powerful way to study energetic particle confinement in
toroidal devices. While a majority of work has focused
on nonrelativistic particles, confinement of relativistic run-
away electrons [2] has received more attention recently for
the modeling of disruptions in reactor-grade fusion de-
vices. For natural disruption conditions without any mit-
igation scheme, the attainable kinetic energy of runaways
is estimated to be on the order of 100 MeV in ITER [3].
Therefore, relativistic treatment of the guiding-center the-
ory is mandatory.

This paper describes a guiding-center model for a run-
away electron orbit that includes the effects of the slow
equilibrium changes over the resistive timescale. The
model considers the induction field produced by nonideal
changes in magnetic fluxes. A relatively strong electric
field induced during disruptions accelerates hot tails of the
electron distribution function and yields significant popu-
lations of runaway electrons. Here the toroidal induction
field Eφ is written in terms of the derivative of time of the
poloidal flux function ψp:

Eφ =
∂ψp

∂t

∣∣∣∣∣∣
x

∇φ, (1)

where φ is a geometrical toroidal angle. The relation be-
tween the induction field and the equilibrium evolution be-
comes clear when we consider the axisymmetric evolution
of the poloidal fluxes over the resistive timescale, which
was discussed by Riemann et al. [4], considering runaway
electron generation such that

author’s e-mail: matsuyama.akinobu@jaea.go.jp

σ‖μ0
∂ψp

∂t
= Δ∗ψp − μ0R jr. (2)

In (2), Δ∗ is the Grad-Shafranov operator

Δ∗ = R
∂

∂R
1
R
∂

∂R
+

∂2

∂Z2
, (3)

where (R,Z) denotes the position in the poloidal plane,
σ‖ is the neoclassical conductivity, μ0 is the vacuum per-
meability, and jr is the generated runaway current. The
fast temperature drop in an early phase of the disruptions
causes a significant increase in the plasma resistivity σ−1

‖ ,
which induces the toroidal voltage above the threshold
of runaway generation. Because the generated runaways
may cause substantial damage to plasma-facing compo-
nents and may unacceptably shorten their lifetimes, three-
dimensional (3D) orbit calculations for runaway electrons
are important, e.g., for evaluating the wall load and for
studying physical mechanisms of the runaway generation
during disruptions.

In this paper, the guiding-center equations are formu-
lated in Boozer coordinates, which have been widely used
in practical simulations of the energetic particle motions.
Although relativistic guiding-center equations in magnetic
coordinates have appeared in several studies [5–9], we are
not aware of any publication that includes the induction
field. Although the induction field is normally neglected
in energetic-particle simulations, it plays an essential role
in accelerating light electrons along the magnetic field and
in determining the energy distribution function of runaway
electrons generated during disruptions in present and fu-
ture tokamaks [10].

In our derivation, the radial covariant component of
the equilibrium magnetic field is retained, although it is
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often neglected in conventional guiding-center theory [11].
By including this component, we can develop a consis-
tent treatment of the guiding-center orbit for finite-pressure
plasmas, which are important, for instance, for high-βp

disruption [12] (where βp is the poloidal beta value). For
this purpose, we applied the Lagrangian formulation that
was originally developed by White and Zakahrov [13] for
nonrelativistic particle motions in static magnetic fields, to
relativistic particle motions in weak time dependent sys-
tems. We show that both the canonical and noncanoni-
cal equations are obtained in a consistent way for axisym-
metric equilibria, including a weak time dependence in the
magnetic-flux function.

Section 2 describes the guiding-center Lagrangian for-
malism for relativistic particles in magnetic coordinates. In
Sec. 3, we describe the relativistic guiding-center model in
canonical form, following the Lagrangian formalism de-
scribed in [13]. A transformation of canonical to non-
canonical variables is presented in Sec. 4. Finally, con-
clusions are drawn in Sec. 5. For practical applications in
runaway electron generation, we discuss the validity of the
ordering with respect to the inductive electric field on the
basis of the main characteristics of an ITER-grade disrup-
tion.

2. Guiding-Center Lagrangian for
Relativistic Electrons
The framework of guiding-center equations is built

with the assumption that when it is compared to particle
gyromotion, the equilibrium magnetic field varies slowly
over spatial and temporal scales. In the following, we nor-
malize quantities with major radius R0, magnetic field on
the axis B0, and transit time ω−1

t = R0/c, where c is the
speed of light. We introduce the drift-ordering parameter
ε ≡ ωt/ωc � 1, where ωc = |e|B0/m with particle charge e
and mass m.

We begin with a description in Boozer coordinates
(s, θ, ζ), where s is the surface label and θ and ζ are the
poloidal and toroidal angles, respectively. In axisymmet-
ric tokamaks (∂/∂ζ = 0), the equilibrium magnetic field
with a nested flux surface can be written in a contravariant
representation as

B = ψ′t (s, εt)∇s × ∇θ + ψ′p(s, εt)∇ζ × ∇s, (4)

where 2πψt and 2πψp denote the toroidal and poloidal mag-
netic fluxes inside the magnetic surface, respectively. The
prime indicates the derivative with respect to the flux sur-
face label s. The vector potential corresponding to (4) is
given by A = ψt∇θ − ψp∇ζ. To include the induction field,
we follow [14] and retain an explicit time dependence in
the toroidal and poloidal fluxes. This is accomplished by
setting ∂/∂t ∼ O(ε), as indicated symbolically in (4). In
Boozer coordinates, the equilibrium magnetic field in the
covariant representation is

B = Jt(s, εt)∇θ + Jp(s, εt)∇ζ + β∗(s, θ, εt)∇s, (5)

where (2π/μ0)Jt is the toroidal current flowing inside the
magnetic surface, and (2π/μ0)Jp is the poloidal current
flowing outside the magnetic surface (μ0: with the vac-
uum permeability). The last term β∗(s, θ, εt) denotes the
radial covariant component of the equilibrium magnetic
field; this term is often neglected in the approximate canon-
ical formalism [6].

As is well known, introducing a time dependence in
the magnetic-flux function makes the choice of the mag-
netic surface label s non-trivial in simulations. When we
follow the framework of so-called 1.5D transport codes
(see [15] and reference therein), it is useful to define the
surface label in terms of the toroidal flux function, e.g.,
such that

ρ =

√
ψt

2Bφ0
, (6)

where Bφ0 denotes the representative toroidal magnetic
field. Recall that for slow evolution of tokamak plasmas
over the resistive timescale, a relative motion of the ψt and
ψp contours occurs and the MHD safety factor q ≡ dψt/dψp

effectively changes due to nonideal effects. Because the
strong toroidal field is applied in standard tokamak condi-
tions, the toroidal flux contour moves sufficiently slower
than the poloidal flux ones [16]. To simulate such evo-
lutions, it is therefore convenient to choose the reference
surface label to be the toroidal flux or its equivalence.

It is also important to consider induced losses of ener-
getic particles resulting from electrostatic and electromag-
netic perturbations. Here they are included as perturbed
quantities, δφ and δA. Because energetic electrons are sen-
sitive to details of magnetic-field topologies, losses of rel-
ativistic electrons are considered to be mainly due to mag-
netic perturbations δB = ∇ × δA. For low beta plasmas, a
model of the perturbed vector potential

δA = V(s, θ, ζ)B, (7)

is often used. Although it is straightforward to imple-
ment more general forms of electromagnetic perturbations,
which can be applied to high beta tokamaks or those for
representing full electromagnetic waves [17], here we em-
ploy (7) in the formulation for simplicity.

To treat weak time dependent systems, let us consider
the extended phase space defined by (t, x, p‖, h), where t
is the time, x is the guiding-center position, p‖ = γv‖ is
the normalized relativistic parallel momentum, and h is a
Hamiltonian variable. The relativistic momenta are defined
in terms of the parallel velocity v‖ = u · b and the rela-
tivistic factor γ = 1/

√
1 − v2. With these definitions, the

relativistic guiding-center Lagrangian has the following di-
mensionless form [18]

Ldτ =
σ

ε
[Aeq + εδA + εp‖b] · dx − hdt − Hdτ, (8)

where σ ≡ sgn(e) denotes the sign of the electric charge.
In (8), an independent variable τ is introduced, and the
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Hamiltonian has the dimensionless form of H = γ+δφ−h.
By transforming the Lagrangian from the physical space
(t, x, p‖, h) to that in Boozer coordinates (t, s, θ, ζ, ρc, h),
where ρc = p‖/(σB) + V denotes the canonical parallel
gyroradius [19], (8) leads to

Ldτ =
σ

ε
(ψt + ερcJt)dθ +

σ

ε
(−ψp + ερcJp)dζ,

+ σρcβ∗ds − hdt − Hdτ. (9)

Similarly, the Hamiltonian is transformed into Boozer co-
ordinates, H = [1 + (ρc − V)2B2 + 2μB]1/2 + δφ − h.

3. Canonical form of the Guiding-
Center Equations
In early developments of the guiding-center formal-

ism in magnetic coordinates [11], the radial covariant com-
ponent of the equilibrium magnetic field in (5) was of-
ten neglected in reducing the Lagrangian (9) to canoni-
cal form. However, the subtlety in neglecting the radial
covariant component β∗ has been recognized for a long
time [13] because β∗ does not vanish for finite-pressure
plasma or up-down asymmetric configurations. This is-
sue was resolved for axisymmetric equilibria by White
and Zakharov [13], where they found an explicit transfor-
mation of angle variables to obtain the canonical form of
the guiding-center Lagrangian without neglecting β∗. In
this paper, we show that their approach can be straight-
forwardly applied to a relativistic guiding-center model
that involves a weak time dependence in the magnetic-flux
functions.

To cast (9) into a canonical form, let us introduce new
toroidal and poloidal angles, ζc and θc, such that

ζc = ζ + F(s, θ, εt), (10a)

θc = θ. (10b)

The generating function F(s, θ), which also involves a
weak time dependence on the order of ε, is here defined
by [13]

F(s, θ, εt) =
∫ s

0

β∗(s, θ, εt)
Jp(s, εt)

ds. (11)

Hence we obtain the total derivative of ζ as

ζ̇ = ζ̇c − ∂F
∂t

ṫ − β∗
Jp

ṡ − ∂F
∂θ
θ̇,

where the dot indicates derivative with respect to τ. The
essence of (10) is to choose the generating function such
that the transformation prevents the poloidal angle from
being changed and modifies an angle variable only in
the symmetric direction of the equilibrium magnetic field,
which is the toroidal direction in case of axisymmetric
tokamak geometry. As it can be shown, a similar trans-
formation method to canonical variables becomes intrin-
sically implicit in systems having no symmetry direction,

such as stellarator and helical devices. For such systems,
nonlinear equations needs to be solved by iteration for ob-
taining the canonical variables.

Inserting the new poloidal and toroidal angles θc and
ζc into the Lagrangian and applying the formula of par-
tial integrals with respect to the surface label s, fg =∫

f ′gds +
∫

fg′ds, we obtain a canonical form of the rela-
tivistic guiding-center Lagrangian:

L = pc
θθ̇c + pc

ζ ζ̇c − hc ṫ + Ṡ − H. (12)

Here, the poloidal and toroidal canonical momenta pc
θ and

pc
ζ and a new Hamiltonian variable hc are defined by

pc
θ =

σ

ε

[
ψt +

∫
ψ′p
∂F
∂θ

ds + ερc

(
Jt − Jp

∂F
∂θc

)]
,

(13a)

pc
ζ =

σ

ε
(−ψp + ερcJp), (13b)

hc = h + pc
ζ

∂F
∂t
+
∂S
∂t
. (13c)

Because in (12), the derivative of the gauge function

S (s, θ, εt) =
∫ s

0
ψp(s, εt)

β∗(s, θ, εt)
Jp(s, εt)

ds, (14)

does not affect guiding-center motion, Ṡ can be eliminated
from the Lagrangian. Comparing (13) with its counterpart
in [13], the Hamiltonian variable h is transformed to hc in
the present case, which manifests a weak time dependence
in the equilibrium magnetic field. Finally, we obtain the
equation of motion in the form of the Hamilton’s equation
from (12):

ṫ = 1, ḣc =
∂H
∂t
,

θ̇c =
∂H
∂pc

θ

, ṗc
θ = −

∂H
∂θc

,

ζ̇c =
∂H
∂pc

ζ

, ṗc
ζ = −

∂H
∂ζc

, (15)

where the Hamiltonian in canonical coordinates is given
by

H =

√
1 +

[
1
Jp

(
ψp

ε
+ σpc

ζ

)
− V

]2

B2 + 2μB

+δφ − hc − pc
ζ

∂F
∂t
− ∂S
∂t
.

Note here that when we neglect potential (δφ) and mag-
netic (V) fluctuations, the Hamiltonian does not involve
any dependence on the toroidal angle ζc for axisymmet-
ric systems. It is therefore clear from (15) that toroidal
canonical momentum is exactly conserved.

4. Noncanonical Form of the Guiding-
Center Equations
While the canonical form presented in Sec. 3 has the-

oretical merit in analytic treatments, e.g., to understand
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the conserving properties of the guiding-center motion, the
noncanonical form is useful for practical purposes of nu-
merical implementation. Noncanonical equations of mo-
tion are derived from Euler-Lagrange equations

d
dτ

(
∂L

∂Żi

)
− ∂L
∂Zi
= 0, (i = t, s, θ, ζ, ρc, h). (16)

Using the guiding-center Lagrangian (9), we obtain Euler-
Lagrange equations for the noncanonical variables in an
explicit way:

−∂H
∂s

ṡ − ∂H
∂θ

θ̇ − ∂H
∂ζ
− ∂H
∂ρc
− σ

[
∂ψt

∂t
θ̇ − ∂ψp

∂t
ζ̇

]
= 0,

σ

ε

(
ψ′t ṡ + ε

∂ψt

∂t
ṫ + ερ̇cJt + ερcJ′t ṡ

)

−
[
σρc

∂β∗
∂θ

ṡ − ∂H
∂θ

ṫ

]
= 0,

σ

ε

(
−ψ′p ṡ − ε ∂ψp

∂t
ṫ + ερ̇cJp + ερcJ′p ṡ

)
+
∂H
∂ζ

ṫ = 0,

σρ̇cβ∗ + σρc
∂β∗
∂θ

θ̇ −
[
σ

ε
(ψ′t + ερcJ′t )θ̇

+
σ

ε
(−ψ′p + ερcJ′p)ζ̇ − ∂H

∂s
ṫ

]
= 0,

σJtθ̇ + σJpζ̇ + σβ∗ ṡ − ∂H
∂ρc

ṫ = 0. (17)

By inverting (17) with respect to (ṫ, ṡ, θ̇, ζ̇, ρ̇c, ḣ), we obtain
noncanonical forms of the guiding-center equations; this
would be the most straightforward method. Nonetheless,
to check consistency, we consider a different approach, a
direct transformation of canonical to noncanonical vari-
ables using (13).

Let us consider the Poisson brackets of arbitrary
phase-space functions f and g in terms of the canonical
variables, which are given in diagonalized form:

{ f , g} = ∂ f
∂θc

∂g

∂pc
θ

− ∂ f
∂pc

θ

∂g

∂θc
+
∂ f
∂ζc

∂g

∂pc
ζ

− ∂ f
∂pc

ζ

∂g

∂ζc
− ∂ f
∂t

∂g

∂hc
+
∂ f
∂hc

∂g

∂t
. (18)

Using (13) and (18), we can calculate the Poisson brack-
ets {Zi,Zj} with respect to each pair of the noncanonical
variables Zi ≡ (t, s, θ, ζ, ρc, h). For this, we employ the
transformation rule of Poisson brackets Zi → Z̄i:

{Z̄i, Z̄ j} =
∑
m,n

∂Z̄i

∂Zm
{Zm,Zn}∂Z̄ j

∂Zn
. (19)

After some lengthy manipulations, we obtain a set of Pois-
son brackets with respect to each pair of noncanonical vari-
ables as follows:

{t, s} = 0, {t, θ} = 0, {t, ζ} = 0,

{t, ρc} = 0, {t, h} = −1,

{s, θ} = −ε Jp

σD , {s, ζ} = ε Jt

σD , {s, ρc} = 0,

{s, h} = ε

D
(
Jt
∂ψp

∂t
+ Jp

∂ψt

∂t

)
+ O(ε2),

{θ, ζ} = −ε β∗
σD , {θ, ρc} = − 1

σD (−ψ′p + ερcJ′p),

{θ, h} = ε β∗D
∂ψp

∂t
+ O(ε2),

{ζ, ρc} = 1
σD

[
ψ′t + ερc

(
J′t −

∂β∗
∂θ

)]
,

{ζ, h} = −ε β∗D
∂ψ

∂t
+ O(ε2),

{ρc, h} = − 1
D (−ψ′p + ερcJ′p)

∂ψt

∂t

− 1
D

[
ψ′t + ερc

(
J′t −

∂β∗
∂θ

)]
∂ψp

∂t
+ O(ε2),

(20)

where D denotes the Jacobian with respect to the phase-
space flow of guiding-center motion

D = ψ′pJt + ψ
′
t Jp

+ερc

(
JpJ′t − JtJ

′
p − Jp

∂β∗
∂θ

)
. (21)

In (20), we indicate in a symbolic manner, the second-
order terms O(ε2) contained in the transformed Poisson
brackets. In deriving (20), correction terms appear due to
the weak time dependence of the generating (F) and gauge
(S ) functions, but they appear only in the second order.
Hence, they can be neglected consistently in deriving the
guiding-center equations of the first order of the gyroradii,
which are used in standard numerical simulations. Finally,
the noncanonical equations of motion can be obtained us-
ing (20) in the form

Żi = {Zi,H} = {Zi,Zj} ∂H
∂Zj

, (22)

where Zi = (t, s, θ, ζ, ρc, h). Writing (22) in an explicit
manner, we obtain

ṡ =
Jp

D
(
− ε
σ

∂H
∂θ
− ε ∂ψt

∂t

)
− Jt

D
(
− ε
σ

∂H
∂ζ
+ ε

∂ψp

∂t

)
,

(23a)

θ̇ = ε
Jp

σD
∂H
∂ψp
− 1
σD (−1 + ερcJ′p)

∂H
∂ρc

−ε β∗
σD

∂H
∂ζ
+ ε

β∗
D
∂ψp

∂t
, (23b)

ζ̇ = −ε Jt

σD
∂H
∂s
+

1
σD

[
q + ερc

(
J′t −

∂β∗
∂θ

)]
∂H
∂ρc

+ε
β∗
σD

∂H
∂θ
+ ε

β∗
D
∂ψt

∂t
, (23c)

ρ̇c =
1
εD

[
q + ερc

(
J′t −

∂β∗
∂θ

)] (
− ε
σ

∂H
∂ζ
+ ε

∂ψp

∂t

)

− 1
εD (−1 + ερcJ′p)

(
− ε
σ

∂H
∂θ
− ε ∂ψt

∂t

)
. (23d)

The terms containing the radial covariant component β∗
in (23) are normally neglected in the approximate canon-
ical theory. We can check that the expressions in (23) are
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consistent with what is obtained by inverting the Euler-
Lagrange equations (17) up to the order of ε. Equa-
tions (23) describe the effects of slow equilibrium change
and the associated electron acceleration in toroidal geom-
etry. In addition, they also involve the radial, poloidal, and
toroidal drift terms due to the induction field, ∂ψp/∂t and
∂ψt/∂t, which are related to the inward motion of trapped
particles in the presence of the toroidal electric field [20].
In (23), relativistic corrections appear in the derivatives of
the Hamiltonian, which are given such that

∂H
∂s

)
t,θ,ζ,ρc,h

=
δ

γ

∂B
∂s
− ρ‖B

2

γ

∂V
∂s
+
∂δφ

∂s
, (24a)

∂H
∂θ

)
t,s,ζ,ρc,h

=
δ

γ

∂B
∂θ
− ρ‖B

2

γ

∂V
∂θ
+
∂δφ

∂θ
, (24b)

∂H
∂ζ

)
t,s,θ,ρc,h

= −ρ‖B
2

γ

∂V
∂ζ
+
∂δφ

∂ζ
, (24c)

∂H
∂ρc

)
t,s,θ,ζ,h

=
ρ‖B2

γ
, (24d)

with δ = μ + ρ2
‖B.

For numerical simulations, the other sets of non-
canonical variables such as those including the paral-
lel gyroradius (t, s, θ, ζ, ρ‖, h) or the parallel momentum
(t, s, θ, ζ, p‖, h) are often employed, where ρ‖ = ρc − V .
Such a transformation to other sets of noncanonical coor-
dinates is straightforward with the help of the table of the
Poisson brackets in (20).

5. Discussion and Conclusions
Guiding-center equations for relativistic particles are

derived that consider the induction field produced by slow
equilibrium changes over the resistive timescale. We re-
tain an explicit time dependence in the equilibrium mag-
netic field, following [14], by writing ∂/∂t ∼ O(ε). Our
formulation is summarized in Fig. 1. We begin with the
first-order guiding-center Lagrangian in the physical space
(t, x, p‖, h) and express it in terms of Boozer coordinates
(s, θ, ζ) and the canonical parallel gyroradius ρc. By ap-
plying the transformation of the toroidal angle ζ → ζc, we
obtain a set of canonical variables (t, θc, ζc, hc, pc

θ, pc
ζ) in the

extended phase space. Note that the guiding-center equa-
tions (23) obtained from the transformation of the Poisson
brackets from canonical variables to noncanonical ones
are identical to what is obtained by directly inverting the
Euler-Lagrange equations in (17). This illustrates, within
the order of accuracy considered here, the equivalence be-
tween the canonical (15) and noncanonical forms (23) even
with their extension to weak time dependent systems. As
is seen from the Poisson brackets in (20), since the cor-
rection terms containing the generating (F) and gauge (S )
functions appear only in the second order, they can be ne-
glected consistently in deriving the first-order guiding cen-
ter equations. In this formulation, because no approxima-
tions on the magnitude of β∗ are applied, both the canon-

Fig. 1 Summary of the derivation in this paper. The Lagrangian
with respect to noncanonical variables (t, s, θ, ζ, ρc, h) in
Boozer coordinates is transformed into canonical vari-
ables by means of the transformation of the toroidal an-
gle ζ → ζc, which yields the gauge transformation of the
Lagrangian, L → L + Ṡ in (12). The canonical and non-
canonical forms of the guiding-center equations obtained
are equivalent to each other up to the first order in the
drift-ordering parameter.

ical and noncanonical guiding-center equations obtained
here appropriately recover the original ones that employs
the physical space variables (t, x, h) [18] for finite-pressure
plasmas.

The guiding-center model derived here assumes that
the induction field due to changes in the magnetic-flux
functions ψt(s, εt) and ψp(s, εt) is first order. We briefly
discuss the validity of this assumption for simulations of
runaway generation in tokamak experiments. For ITER,
the in-plasma electric field is evaluated to be 38 V/m [3]
for the disruption of a plasma with a toroidal current Ip =

15 MA. This is much weaker than the Dreicer field thresh-
old,

ED =
nee3 lnΛ

4πε2
0 Te

, (25)

where ne is the electron density, Te is the temperature in
energy units, lnΛ is the Coulomb logarithm, and ε0 is the
vacuum permittivity. If the electric field is larger than the
Dreicer electric field, E‖ > ED, bulk electrons are acceler-
ated into the runaway region in momentum space for which
the E‖-acceleration exceeds the collisional friction force
against thermal electrons. Nevertheless, no such strong
Dreicer generation is anticipated in tokamak disruptions
because of its high density; typical E‖ values for toka-
mak disruptions are in the intermediate regime such that
Ec � E‖ � ED, for which only a fraction of thermal elec-
trons, i.e., a hot tail, becomes runaway. Here

Ec =
nee3 lnΛ

4πε2
0 mec2

, (26)

is the critical electric field that defines the threshold of run-
away generation. Because of the relativistic constraint
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[21], absolutely no runaway occurs if E‖ < Ec. For
the above E‖ value, the electron acceleration time tacc =

mec/eE‖ is on the order of 10−4–10−5, which is much
slower than the electron transit time 2π/ωt = 2πR0/c ∼
10−7. Therefore, the condition that t−1

acc/ωt � 1 pos-
tulates the use of weak induction field ordering. Note
here that because the induction field is fairly weak in the
above comparison, setting their effect to second-order, i.e.,
∂/∂t ∼ O(ε2), may also be appropriate. Even though mod-
ifications to the cross-field drift ṡ, θ̇, and ζ̇ are negligible,
the toroidal acceleration term ∂ψp/∂t still has an essential
contribution in determining rapid parallel motion of rel-
ativistic electrons. Neglecting this term limits the appli-
cations of relativistic guiding-center formalisms, e.g., to
evaluate the energy distribution of runaway electrons. The
latter is an important part in modeling runaway electron be-
havior during tokamak disruptions, e.g., for predicting the
energy flux flowing from the core region to the first wall.

For actual simulations, appropriate models for evalu-
ating the induction field are necessary. One candidate is
to use 1.5D transport codes (e.g., DINA [22], TASK [23],
and TOPICS [15]). Following tokamak transport simula-
tions using these codes, the runaway orbit is calculated for
a given MHD equilibrium with the magnetic coordinates,
and the latter is updated after an appropriate time-step over
the slow resistive timescale under the influence of the ex-
ternal coil current. We mention that the weak induction-
field ordering used here is appropriate for building such a
framework of integrated simulations of disruption and run-
away electrons. In practice, the feature that the fast MHD
timescale is eliminated in transport simulations is impor-
tant to carry out long-term simulations covering the whole
disruption lifetime; such lifetimes are comparable to sev-
eral hundred milliseconds or one second in an ITER-grade
device.
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