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MHD Instabilities in Tokamak Plasmas with Hollow
Current Density Profiles
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We analyze linear instability in low beta tokamak plasmas with nonmonotonic q-profiles using resistive mag-
netohydrodynamic equations. We consider n = 2 (where n is the toroidal mode number) modes for configurations
where qmin is close to 1.5 and sufficiently below 2 so that the separation of the rational surfaces with q = 2 is
large. Similar instability characteristics arise when qmin is slightly and moderately above 1.5.
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1. Introduction
If the toroidal current density profile of a plasma is

hollow, the safety factor q profile is nonmonotonic, and the
magnetic shear is negative in the central region. The for-
mation of transport barriers has been confirmed in regions
of negative magnetic shear in many tokamak experiments.
However, the evolution of this type of configuration may
lead to instabilities because multiple resonant surfaces with
the same q value exist in the plasma. In particular, double
tearing modes may affect the confinement since they may
cause relaxations of the electron temperature. Such relax-
ations have been observed in several experiments, where
they have been attributed to double tearing modes [1, 2].

The linear stability of double tearing modes has been
analyzed using a simplified slab plasma model [3]. The
distance Δrs between two rational surfaces with the same
q value is a significant quantity for double tearing modes.
When Δrs is sufficiently large, the structure of the mode
resembles that of individual single tearing modes local-
ized on each resonant surface. When Δrs is sufficiently
small, the interaction between two rational surfaces be-
comes strong, and a mode with much higher growth rate
arises.

The linear growth rate and mode structure of the dou-
ble tearing mode had not been systematically studied until
approximately ten years ago. Since then, researchers have
numerically investigated the linear behaviors of the double
tearing mode for zero beta plasmas with nonmonotonic q-
profiles in cylindrical geometry using the reduced magne-
tohydrodynamic equations [4,5]. However, to properly un-
derstand the nature of instabilities, plasmas must be inves-
tigated in general toroidal geometry. To this end, we apply
toroidal geometry to low beta plasmas with nonmonotonic
q-profiles and numerically solve incompressible resistive
magnetohydrodynamic (MHD) equations.

author’s e-mail: xa52427@pg7.so-net.ne.jp

2. Model
In this study, tokamak plasmas are analyzed using the

linearized resistive MHD equations. The perturbed quan-
tities ũ, B̃, and p̃, corresponding to the fluid velocity, the
magnetic field, and the pressure, respectively, are obtained
from

λρm,eqũ=
1
μ0

(∇×Beq)× B̃ +
1
μ0

(∇× B̃)×Beq−∇P̃,

(1)

λB̃ = ∇ × (ũ × Beq) − η

μ0
∇ × ∇ × B̃, (2)

∇ · ũ = 0, (3)

where λ is the growth rate to be determined. Also, η is the
resistivity, and the equilibrium quantities ρm,eq and Beq de-
note the mass density and magnetic field, respectively. The
resistivity and equilibrium mass density are assumed con-
stant. The equilibrium magnetic field possesses up-down
symmetry and satisfies

1
μ0

(∇ × Beq) × Beq = ∇peq, (4)

∇ · Beq = 0, (5)

where peq is the equilibrium pressure.
The flux coordinate system (ρ, θ, ζ) is employed for

the geometry considered here. Here ρ, which is the av-
eraged minor radius normalized by the edge value, labels
the magnetic flux surface, i.e., the surface of constant pres-
sure, and θ and ζ, which range from −π to π, are poloidal
and toroidal angle-like coordinates, respectively. Because
of the up-down symmetry of the equilibrium, the perturbed
quantities can be expanded as the following Fourier series:

ṽρ =
∑

m

v
ρ
m(ρ) cos(mθ − n0ζ),

ṽθ =
∑

m

vθm(ρ) sin(mθ − n0ζ),
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ṽζ =
∑

m

v
ζ
m(ρ) sin(mθ − n0ζ),

B̃ρ =
∑

m

Bρm(ρ) sin(mθ − n0ζ),

B̃θ =
∑

m

Bθm(ρ) cos(mθ − n0ζ),

B̃ζ =
∑

m

Bζm(ρ) cos(mθ − n0ζ),

p̃ =
∑

m

pm(ρ) cos(mθ − n0ζ), (6)

where m and n0 are the poloidal and toroidal mode num-
bers, respectively, and

ṽρ = ũ · ∇ρ, ṽθ = ũ · ∇θ, ṽζ = ũ · ∇ζ,
B̃ρ = B̃ · ∇ρ, B̃θ = B̃ · ∇θ, B̃ζ = B̃ · ∇ζ. (7)

The plasma is assumed to be surrounded by a perfectly
conducting wall. Thus, at the wall, we have

v
ρ
m(1) = 0, Bρm(1) = 0. (8)

The boundary conditions at the magnetic axis ρ = 0 are
given by

v
ρ
m = ρv

θ
m = Bρm = ρBθm = 0, |m| � 1,

dvρm
dρ
=

d(ρvθm)
dρ

=
dBρm
dρ
=

d(ρBθm)
dρ

= 0, |m| = 1,

v
ζ
m = Bζm = pm = 0, m � 0,

dvζm
dρ
=

dBζm
dρ
=

dpm

dρ
= 0, m = 0.

(9)

The above conditions are derived by requiring that the
physical quantities be well-behaved near the magnetic axis.
The growth rate and Fourier components of the perturbed
quantities are determined by the inverse power method [6].
Although this method allows us to extract unstable modes
other than the most unstable one, in this study, we consider
only the fastest growing mode.

3. Numerical Results
Plasma equilibria are constructed by the varia-

tional moments equilibrium code (VMEC) [7]. Three-
dimensional equilibria are obtained by minimizing the po-
tential energy of the plasma using the steepest descent
method. The cross section of the plasma is circular with
a radius of 0.75 m. The major radius at the plasma cen-
ter is R0 = 2.5 m. The constant mass density is set to
ρm,0 = 10−6 kg/m3. The magnetic field strength at the
magnetic axis is B0 = 4 T. The pressure profile (normal-
ized by central pressure) is shown in Fig. 1. This profile
displays a large slope in the middle region. The norm of
∇ρ is almost uniform throughout the plasma. This implies
the pressure gradient is large in the middle region. Fig-
ure 2 shows the safety factor profiles used in the analysis.

Fig. 1 Pressure profile normalized by pressure at the magnetic
axis.

Fig. 2 Safety factor profiles.

The minimum value of safety factor qmin is slightly below
and slightly above 1.5 for Cases (A) and (B), respectively.
For Case (C), qmin is moderately above 1.5. This study is
restricted to modes with toroidal mode number n0 = 2.

In Fig. 3 the growth rate is plotted as a function of
magnetic Reynolds number S = τR/τH for various val-

ues of β0 for Case (A). Here, τH =

√
μ0ρm,0/B 2

0 R0 and

τR = μ0R 2
0 /η are the Alfvén time and resistive diffusion

time, respectively. Also, β0 is the beta value at the mag-
netic axis. Figure 4 shows the mode structure of the radial
component of the perturbed fluid velocity for β0 = 0.62 %
and S = 3 × 106. The mode structures for the other cases
are similar to this one. The m = 3 component is dom-
inant and this component has a large value between the
resonant surfaces where q = 1.5. This structure is close to
the mode structure of displacement in slab geometry when
the distance between rational surfaces is small [3]. Figure 5
shows the dependence of the growth rates on S for Case
(C). In contrast to the situation in Case (A), the growth rate
decreases with β0 remarkably. Figure 6 shows the mode
structures of ṽρ for S = 3 × 106 at three values of β0. The
m = 3 component is large at β0 = 3.13 %. This compo-
nent is negligibly small at β0 = 0.62 %. The m = 4 com-
ponent is localized at the resonant surfaces where q = 2
and has two nodes in the vicinities of the resonant surfaces
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Fig. 3 S dependence of the growth rates for various values of β0

for Case (A).

Fig. 4 Mode structure of ṽρ for Case (A) and S = 3×106 at β0 =

0.62 %. Arrows indicate the locations of the resonant
surfaces with q = 1.5.

Fig. 5 S dependence of the growth rates for various values of β0

for Case (C).

Fig. 6 Mode structures of ṽρ for Case (C) and S = 3 × 106 at (a)
β0 = 0.62 %, (b) β0 = 1.87 %, and (c) β0 = 3.13 %. Ar-
rows indicate the locations of the resonant surfaces where
q = 2.

at β0 = 0.62 and 1.87 %. This structure is close to the
mode structure of displacement in slab geometry when the
distance between rational surfaces is sufficiently large [3].
When the region where q is close to some rational number
is broad, in general, the plasma becomes more unstable.
Therefore, the configurations where qmin is very close to
1.5 are expected to be more unstable. Next we consider
Case (B) corresponding to qmin � 1.5. Figure 7 shows the
dependence of growth rates on S for Case (B). The growth
rate varies with β0 remarkably as in Case (C). Figure 8
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Fig. 7 S dependence of the growth rates for various values of β0

for Case (B).

shows the mode structures of ṽρ for S = 3 × 106 at three
values of β0. The m = 3 component is dominant for the
cases β0 = 1.87 and 3.13 %. This component is small
compared with the m = 4 component, which is localized
at the resonant surfaces where q = 2, at β0 = 0.62 %. The
m = 3 component becomes smaller as β0 decreases for
Cases (B) and (C), and this component is especially small
in configurations in which the growth rate is highly sen-
sitive to S . The growth rate decreases as S is decreased
in low S at small β0 for all the cases. We suppose this is
because the second term on the right-hand side of Eq. (2)
has a stabilizing effect as a dissipation term when the re-
sistivity is sufficiently large. There is spiky behavior in the
vicinity of ρ = 0 in some of the figures showing the mode
structures. This kind of spiky behavior appears randomly
independently of the configuration. We conjecture that it
has nothing to do with the physics of plasma and it is some
numerical noise.

The growth rates of ideal modes are plotted as a func-
tion of qmin for β0 = 1.87 and 3.13 % in Fig. 9. The growth
rates in the left part of this figure are larger than those in
the right part for β0 = 3.13 %. The plasma is unstable
in the range 1.5 < qmin < 1.53 and stable in the range
1.53 < qmin < 1.62 for β0 = 1.87 %. These facts are con-
sistent with the prediction mentioned above. The growth
rates are plotted as a function of qmin for S = 3 × 106 and
β0 = 0.62 % in Fig. 10. For the region qmin > 1.5 the
growth rate abruptly increases in the neighborhood of 1.5.
Apart from this behavior around 1.5, the growth rates in
the left and right parts above qmin = 1.5 are not so differ-
ent, unlike the above cases of ideal modes. The growth
rate abruptly changes in the region 1.47 < qmin < 1.5.
The mode structure of ṽρ also abruptly changes in this re-
gion. The mode structures in the range 1.41 < qmin < 1.47
are similar to the profile in Fig. 4. The mode structures

Fig. 8 Mode structures of ṽρ for Case (B) and S = 3 × 106 at (a)
β0 = 0.62 %, (b) β0 = 1.87 %, and (c) β0 = 3.13 %. Ar-
rows indicate the locations of the resonant surfaces where
q = 2.

in the range 1.51 < qmin < 1.62 resemble the profiles in
Figs. 6 (a) and 8 (a). The m = 3 component becomes small
as qmin becomes large.

4. Summary
The linear instability characteristics of low beta toka-

mak plasmas with hollow current density profiles were nu-
merically investigated using resistive MHD equations. We
examined modes with n0 = 2 for configurations where qmin
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is close to 1.5. When qmin is slightly below 1.5, the distance
between the rational surfaces with q = 1.5 is small and the
m = 3 component, which is a dominant component, has a
large value between the rational surfaces. The growth rate
does not vary with β0 so much in this case. When qmin is
above 1.5 and sufficiently below 2 so that the distance be-
tween the rational surfaces with q = 2 is large, the m = 3
and m = 4 components are dominant. The m = 3 compo-
nent becomes smaller as β0 decreases and the growth rate
varies with β0 remarkably. This trend emerges when qmin

is moderately above 1.5 and also when qmin is almost equal
to 1.5.

For the case of qmin > 1.5, the ideal modes tend to
become more unstable when qmin is very close to 1.5 be-
cause the region where q is almost equal to 1.5 is broad,
whereas there is only a little such tendency for the resis-
tive modes at very low beta. The instability properties of
the resistive modes at very low beta suddenly change in
the neighborhood of qmin = 1.5, where the transition from
modes with large growth rates to modes with much smaller
growth rates occurs.

Fig. 9 qmin dependence of the growth rates for ideal modes.

Fig. 10 qmin dependence of the growth rate for S = 3 × 106 and
β0 = 0.62 %.

Appendix
We verify our numerical code by comparing the re-

sults of our code with those of another code. Numerical
simulations based on the reduced resistive MHD in cylin-
drical geometry have been previously conducted [5]. Here
we demonstrate that the numerical results obtained by our
code resemble those in Ref. 5 for similar configurations.

We use a zero beta plasma with a circular cross sec-
tion. The major radius at the plasma center is R0 = 2.5 m
and the aspect ratio of the plasma is 10. The constant mass
density is set to ρm,0 = 10−6 kg/m3. The magnetic field
strength at the magnetic axis is B0 = 4 T. Figure A1 shows
the safety factor profile. This profile is analogous to the q
profile of Case (IIIa) in Ref. 5. We consider modes with
n0 = 1.

In Fig. A2, the growth rates λ1 and λ2 of the modes
with the largest growth rate and the second largest one,
respectively, are plotted as a function of the magnetic
Reynolds number, defined as S = τR/τH with τH =√
μ0ρm,0/B 2

0 R0 and τR = μ0R 2
0 /η. The S dependence

in Fig. A2 is qualitatively similar to the left portion of
Fig. 15 (a) in Ref. 5. The orders of magnitude of S and

Fig. A1 Safety factor profile.

Fig. A2 S dependence of the growth rates.
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Fig. A3 Mode structures of ṽρ and B̃ρ at S = 108. The mode structures of the eigenmodes which grow at the largest growth rate and the
second largest one are shown in (a) and (b), respectively. Vertical dotted lines indicate the locations of the resonant surfaces
where q = 2.

S Hp in these figures differ because the magnetic Reynolds
number is defined differently in the two studies. Fig-
ure A3 shows the mode structures of ṽρ and B̃ρ obtained
at S = 108, which is almost equivalent to S Hp at which
the profiles in Figs. 4 (a) and 4 (c) in Ref. 5 are obtained.
The m = 2 components are dominant for both of the eigen-
modes with the largest growth rate and the second largest
one. The functions φ/r and ψ/r for Case (IIIa) correspond
to the Fourier components vρm and Bρm with m = 2. The
profiles in Figs. 4 (a) and 4 (c) resemble their correspond-
ing profiles in Fig. A3.
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