
Plasma and Fusion Research: Regular Articles Volume 8, 1403150 (2013)

Computation-Communication Overlap Techniques for Parallel
Spectral Calculations in Gyrokinetic Vlasov Simulations

Shinya MAEYAMA, Tomohiko WATANABE1), Yasuhiro IDOMURA, Motoki NAKATA,
Masanori NUNAMI1) and Akihiro ISHIZAWA1)

Japan Atomic Energy Agency, Rokkasho 039-3212, Japan
1)National Institute for Fusion Science, Toki 509-5292, Japan

(Received 11 July 2013 / Accepted 28 August 2013)

One of the important phenomena in magnetically-confined fusion plasma is plasma turbulence, which causes
particle and heat transport and degrades plasma confinement. To address multi-scale turbulence including tem-
poral and spatial scales of electrons and ions, we extend our gyrokinetic Vlasov simulation code GKV to run
efficiently on peta-scale supercomputers. A key numerical technique is the parallel Fast Fourier Transform (FFT)
required for parallel spectral calculations, where masking of the cost of inter-node transpose communications is
essential to improve strong scaling. To mask communication costs, computation-communication overlap tech-
niques are applied for FFTs and transpose with the help of the hybrid parallelization of message passing interface
and open multi-processing. Integrated overlaps including whole spectral calculation procedures show better scal-
ing than simple overlaps of FFTs and transpose. The masking of communication costs significantly improves
strong scaling of the GKV code, and makes substantial speed-up toward multi-scale turbulence simulations.

c© 2013 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: computation-communication overlap, parallel fast Fourier transform, parallel spectral calculation,
MPI/OpenMP hybrid parallelization, Vlasov simulation

DOI: 10.1585/pfr.8.1403150

1. Introduction
Turbulent transport is one of the most important issues

in magnetically-confined plasma researches. Pressure gra-
dients of confined plasma destabilize micro-instabilities,
and then the destabilized micro-fluctuations drive plasma
turbulence via nonlinear coupling between perturbations of
electric potentials and plasma distribution functions. The
plasma turbulence causes particle and heat transport per-
pendicular to magnetic fields and degrades plasma confine-
ment. Typical wavelengths of the plasma turbulence are of
the order of gyroradii of charged particles, while its time
scales are slower than gyrations.

To treat plasma turbulence, the gyrokinetic theory has
been developed. The equations describe time evolution
of gyrophase-averaged distribution functions and electric
potentials with retaining finite gyroradius effects. A lot
of numerical simulations based on the gyrokinetic theory
have been carried out and have contributed to understand-
ings of plasma turbulence [1]. The development of nu-
merical techniques for gyrokinetic simulations has con-
tinued to improve their applicability, accuracy and effi-
ciency. Gyrokinetic simulations require expensive com-
putational resources, since they have to solve time evolu-
tion of gyrophase-averaged distribution functions in five-
dimensional (5D) phase space. We have investigated ion-
scale plasma turbulence by using our gyrokinetic simu-
lation code GKV [2] on tera-scale supercomputers. One

author’s e-mail: maeyama.shinya@jaea.go.jp

of important intrinsic features of plasma turbulence is its
multi-scale physics, which includes temporal and spatial
scales of electrons and ions. Each of two perpendicular di-
rections requires the square root of the ion-to-electron mas
ratio (∼ 43) times finer resolution (therefore, the total per-
pendicular resolution is ∼ 1836 times finer) than that of
ion-scale turbulence. To deal with this numerically chal-
lenging problem, peta-scale computing is necessary.

To realize efficient computations of multi-scale tur-
bulence simulations, parallelization of the high-resolution
perpendicular space is required. In the GKV code, perpen-
dicular dynamics is solved by using the spectral method [3]
with Fast Fourier Transform (FFT) algorithms [4]. The
most commonly used parallel multi-dimensional FFT is the
transpose-split method [5], and one can find many litera-
tures about the spectral or pseudo-spectral methods with
parallel FFTs (e.g., 2D FFTs [6], 3D FFTs with the slab
decomposition [7] and with the pencil decomposition [8]).
While the transpose communications may degrade scala-
bility, it is reported that the overlap of communications and
computations improves efficiencies [5, 9, 10].

To make the GKV code run efficiently on peta-scale
supercomputers, we extended the GKV code in two steps.
First, 3D domain decomposition is extended to 4D one by
adding the perpendicular-space decomposition, which en-
ables us to employ a larger number of cores. The transpose
communications required for parallel 2D FFTs are imple-
mented by using a simple blocking collective communi-

c© 2013 The Japan Society of Plasma
Science and Nuclear Fusion Research

1403150-1



Plasma and Fusion Research: Regular Articles Volume 8, 1403150 (2013)

cation, which makes implementation easy and the use of
specific algorithms possible, like collective communica-
tions optimized for the K computer [11]. Second, trans-
pose communications and FFT computations are over-
lapped by employing a communication thread in a hybrid
parallel model of Message Passing Interface (MPI) and
Open Multi-Processing (OpenMP), which enables over-
laps of computations and blocking communications as well
as non-blocking communications [12]. Masking of com-
munication costs significantly improves strong scaling of
the perpendicular-space parallelization.

The paper is organized as follows. Section 2 explains
governing equations and simulation models employed in
the GKV code. Section 3 describes parallelization methods
developed for peta-scale computing. Section 4 represents
performance analysis of the wave-number-space decompo-
sition, and the overlap methods. Section 5 demonstrates
speed-up of the GKV code on the K computer. Finally,
results are summarized in Sec. 6.

2. The GKV Code
The GKV code is originally developed to investigate

ion-temperature-gradient-driven turbulence with the adia-
batic electron approximation. Extensions of the code for
treating both of kinetic ions and electrons have recently
been done [13]. Since the employed numerical algorithms
are principally the same, we treat gyrokinetic equations
with the adiabatic electron approximation in the following
manuscript.

2.1 Governing equations
The GKV code solves the so-called δ f gyrokinetic

equations, where the distribution function is split into the
equilibrium part FM and the perturbed part δ f . Then the
time evolution of the gyrophase-averaged perturbed ion
distribution function δ f̄i(r, v‖, μ; t) is described by the gy-
rokinetic Vlasov equation,

[
∂

∂t
+

(
v‖

B
B
+ ud + uE

)
· ∇ − μ∇‖B

mi

∂

∂v‖

]
δ f̄i=S + C,

(1)

where v‖, ud and uE are the velocity parallel to the con-
finement magnetic field, the perpendicular magnetic drift
velocity and the perpendicular E × B drift velocity due to
electric potential perturbations. The term with the mag-
netic moment μ and the ion mass mi represents parallel ac-
celeration by the mirror force. The linear term associated
with the equilibrium distribution S contains contributions
of the parallel electric field and equilibrium pressure gra-
dients, which drive micro-instabilities and plasma turbu-
lence. The model collision operator C is friction and diffu-
sion operators in velocity space (v‖, μ). The perturbed elec-
tric potential φ is given by the gyrokinetic quasi-neutrality
equation with the elementary electric charge e and the ion

equilibrium temperature Ti,∫ [
δ f̄i − eFM

Ti

(
φ − φ̄)

]
dv3 = δne, (2)

where φ̄ is the gyrophase-averaged potential. It should be
noted that the velocity space integral must be taken hold-
ing particle (not gyrocenter) position fixed. The perturbed
electron density δne is assumed to be

δne

n0
=

e(φ − 〈φ〉)
Te

, (3)

where 〈· · · 〉 denotes the flux surface average.

2.2 Simulation domain and boundary condi-
tions

In the δ f framework, it is assumed that a steady
equilibrium exists and satisfies the magneto-hydrodynamic
equilibrium condition. Then, we can employ magnetic co-
ordinates as configuration space coordinates, r = (x, y, z),
and the equilibrium magnetic field is described as

B = B0∇x × ∇y = B0√
g

∂r
∂z
, (4)

where
√
g denotes the Jacobian. The flux-surface label x,

the field-line label y and the field-aligned coordinate z cor-
respond to the toroidal coordinates (r, θ, ζ) as x = r − r0,
y = r0(qθ − ζ)/q0, z = θ in a large-aspect-ratio tokamak
with concentric circular magnetic flux surfaces, where q is
the safety factor and the quantities with subscript 0 denotes
the values at the center of the simulation domain. While
plasma turbulence has short perpendicular wavelengths, its
structure elongates in the direction parallel to the magnetic
field. Therefore, a long and thin simulation domain along
magnetic field lines is suitable for capturing the nature of
plasma turbulence with reducing computational costs. An
example of this flux-tube simulation domain is shown in
Fig. 1, which is written by the projection of a box with
short lengths in x and y and a long length in z. The flux-
tube model is widely used to analyze turbulent transport in
the local approximation limit, where the equilibrium quan-
tities are given by local values.

Fig. 1 An example of the flux-tube simulation domain and a
schematic picture of the employed magnetic coordinates.
A circular toroidal flux surface is also plotted as a refer-
ence.

1403150-2



Plasma and Fusion Research: Regular Articles Volume 8, 1403150 (2013)

By assuming statistically homogeneous turbulent
fields, we impose periodic boundary conditions in x and
y and apply the Fourier decomposition as

φ(x, y, z) =
∑

kx

∑
ky

φkx,ky(z) exp
[
i(kxx + kyy)

]
. (5)

Additionally, there is the physical periodicity in the
poloidal angle θ as φ(r, θ, ζ) = φ(r, θ + 2π, ζ). This leads
the modified periodic boundary condition along the field-
aligned coordinate z,

φkx,ky(z) = Θφkx+Δ,ky(z + 2π), (6)

where the connection phase Θ = exp(i2πkyr0) and connec-
tion wave number Δ = −2πs0ky with the poloidal wave
number ky and the magnetic shear s0 [14].

The equations (1)-(3) are numerically solved in
(kx, ky, z, v‖, μ) space except the nonlinear E × B advection
term. Since direct calculations of nonlinear convolutions
in wave number space are computationally too expensive,
the E× B advection term is evaluated in the real space and
transformed back to the wave number space by means of
the 2D FFT and the 3/2 de-aliasing rule in (kx, ky).

3. Parallelization for Peta-Scale Com-
puting
To attain good performance on a distributed-memory

system, domain decomposition by using a MPI library is
necessary, as well as thread parallelization. The original
GKV code decomposes 5D phase space in three directions
(z, v‖, μ), which is not enough for multi-scale turbulence
simulations. In order to achieve efficient computations
on peta-scale supercomputers, we additionally decompose
perpendicular wave-number space k = (kx, ky) and imple-
ment overlaps of computations and inter-node communi-
cations.

3.1 Domain decomposition
At the beginning, we briefly explain the paralleliza-

tion in (z, v‖, μ). The simulation domain is straightfor-
wardly decomposed in 3D subdomains. Each subdomain
has additional border cells to evaluate partial derivatives in
(z, v‖, μ) by using finite difference methods. The dominant
communications are only six point-to-point communica-
tions between adjacent subdomains, which leads to excel-
lent scaling. This 3D domain decomposition has already
been implemented in the original GKV code. Extension to
the 4D decomposition is done by performing the following
wave-number-space decomposition on each subdomain in
(z, v‖, μ).

Now, we consider the 2D FFT in kx and ky, which are
parallelized in ky and kx (x), respectively. Then, the E × B
advection term is evaluated by using the 1D FFT in the
following way:

• IF-X: 1D inverse FFT in kx with ky-decomposition.

• TR-XY: Data transpose from ky-decomposition to x-
decomposition.
• IF-Y: 1D inverse FFT in ky with x-decomposition.
• RSC: Calculation of the E×B term in real space (x, y).
• FF-Y: 1D FFT in y with x-decomposition.
• TR-YX: Data transpose from x-decomposition to ky-

decomposition.
• FF-X: 1D FFT in x with ky-decomposition.

For convenience, the abbreviations will be used through-
out this paper. The inter-node transpose communications
are implemented by using MPI_ALLTOALL, and the other
terms are also parallelized in (ky, z, v‖, μ). We note that
above wave-number space decomposition is better than
another decomposition [i.e., (kx, ky) space is decomposed
in kx and (x, y) space is decomposed in y], which intro-
duces extra point-to-point communications in kx to apply
the modified periodic boundary condition, Eq. (6). Since
the distance of the mode connection is proportional to ky,
the number of the extra communications increases as res-
olutions or the number of parallelization in perpendicular
wave-number space increase. Thus, the extra communica-
tions may degrade scalability if we employ the latter de-
composition.

We use a FFT library, FFTW3 [15], for computing
FFTs and employ a parallel de-aliasing strategy similar to
that shown in Ref. [7]. For applying the 3/2 de-aliasing
rule, kx-direction is expanded before the nonlinear term
calculation, and ky-direction is expanded just after the first
data transpose. Similarly, truncation in ky is carried out be-
fore the second transpose, while truncation in kx is done
after the nonlinear term calculation. Since expansion and
truncation in ky are embedded in the parallel de-aliased
spectral calculations, the costs of expansion and truncation
in kx only appear explicitly in the cost analysis (see Fig. 3
in Sec. 4).

3.2 Overlaps of FFTs and transpose
When one deals with multi-scale turbulence which re-

quires high resolutions in wave-number space, the inter-
node transpose communications in wave-number space ac-
count for a large part of computational costs and degrade
scalability. To overcome the degradation of scalability due
to the inter-node communications, overlaps of computa-
tions and communications are the most promising way. We
implement the overlap method by employing a communi-
cation thread with the help of MPI/OpenMP hybrid paral-
lelization. Figure 2 shows schematic pictures of the over-
lap method, where the master thread (the zeroth one) works
as a communication thread and the others work as com-
putation threads. In the case without overlaps, computa-
tion threads have to wait while the master thread performs
inter-node communications, and after that, all threads carry
out computations. In the case with overlap [see the right
hand side of Fig. 2 (a)], the MASTER (or SINGLE) di-
rective allows that communications on the master thread

1403150-3



Plasma and Fusion Research: Regular Articles Volume 8, 1403150 (2013)

Table 1 Overlap methods of FFTs and transpose. For simplicity, we use following abbreviations, IF-X (or -Y): Inverse FFT in x (or y),
TR-XY (or -YX): Transpose communications from ky (or kx) -decomposition to kx (or ky) -decomposition, RSC: Calculations of
the E × B advection term in real space, and FF-X (or -Y): Forward FFT in x (or y). Asterisks represent μ-loop and “(i)” denotes
number of μ-loop.

No overlap Partial overlaps Integrated overlaps
(μ-loop splitting and overlaps of each (μ-loop splitting and overlaps of all routines.)
transpose and neighboring FFTs.)

* IF-X(i) IF-X(1) IF-X(1)
* TR-XY(i) TR-XY(1), IF-X(2) TR-XY(1), IF-X(2)
* IF-Y(i) * TR-XY(i), IF-X(i + 1), IF-Y(i − 1) TR-XY(2), IF-X(3), IF-Y(1)
* RSC(i) TR-XY(n), IF-Y(n − 1) * TR-XY(i), IF-X(i + 1), IF-Y(i − 1), RSC(i − 2)
* FF-Y(i) IF-Y(n) TR-XY(n), IF-Y(n − 1), RSC(n − 2), FF-Y(1)
* TR-YX(i) * RSC(i) TR-YX(1), FF-Y(2), IF-Y(n), RSC(n − 1)
* FF-X(i) FF-Y(1) TR-YX(2), FF-Y(3), FF-X(1), RSC(n)

TR-YX(1), FF-Y(2) * TR-YX(i), FF-Y(i + 1), FF-X(i − 1)
* TR-YX(i), FF-Y(i + 1), FF-X(i − 1) TR-YX(n), FF-X(n − 1)

TR-YX(n), FF-X(n − 1) FF-X(n)
FF-X(n)

Fig. 2 Schematic pictures of the overlap method with
MPI/OpenMP hybrid parallelization with N threads in
the cases that (a) the communication cost T is smaller
than the computational cost C, and (b) T is larger than
C. The zeroth thread works as a communication thread,
and the others work as computation threads. Shaded
and unshaded boxes represent communication and
computation tasks, respectively.

and computations, which are independent of the commu-
nication data, on the other threads are carried out at the
same time. To reduce load imbalance, the computations are
parallelized by means of DYNAMIC loop decompositions,
where the chunk size is set to be 1 to decrease the granu-
larity. The master thread can also carry out computations
after communications end, if the communication costs are
smaller than the computational costs. On the other hand, if
communication costs are larger than computational ones,
computation threads finish their works and wait until the

communications end. Thus, the total cost S with the over-
lap of computations and communications is,

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C +

T
N

(
T ≤ NC

N − 1

)

T
(
T >

NC
N − 1

) , (7)

where N, T and C are the number of OpenMP threads,
communication and computational costs without overlaps,
respectively. We note that this is an ideal estimation, be-
cause computation tasks may not be uniformly parallelized
by both of N and N − 1 threads, which leads load imbal-
ance and increases computational costs. While both cases
in Fig. 2 show reductions of computational costs compared
to the cost in the case without overlap, C + T , the case of
T < C is preferable from the view point of efficient use of
computational resources. Therefore, it is important to find
as many computing sections which are independent of the
communication data as possible to improve scalability.

Let us consider the application of the above overlap
method to FFTs and transpose. Fortunately, they are inde-
pendent of μ (and z, v‖), the decomposition of μ-loop makes
overlaps of FFTs and transpose possible. Table 1 shows
the newly developed overlap methods of FFTs and trans-
pose. There are three levels of the parallelization strate-
gies: the left column corresponds to the case without over-
laps, which is same as the list shown in Sec. 3.1, the middle
column represents the partial overlaps of each transpose
and FFTs with neighboring indexes, i ± 1, and the right
column shows the integrated overlaps, where the compu-
tations between transpose communications are also over-
lapped. Although the partial overlaps mask communica-
tion costs only by (n− 1)/n parts of IF-X (or -Y) and FF-X
(or -Y) (where n is the total number of μ-loop), the inte-
grated overlaps mask communication costs by (n − 1)/n

1403150-4



Plasma and Fusion Research: Regular Articles Volume 8, 1403150 (2013)

Fig. 3 Histogram of the elapsed time in the case without over-
laps (where the number of the wave-number-space par-
allelization is 32). The items named “E × B”, “Linear”,
and “Others” correspond to the computational costs of the
E × B advection term, linear terms and communications
in (z, v‖, μ), and the rest including a field solver. Abbre-
viations are same as Table 1 except IN: Expansion in kx

before data input to a FFT library, and OUT: Truncation
in kx of the output data from a FFT library.

parts of IF-X and FF-X, and the whole computation be-
tween the two transpose communications. Since the latter
increases overlapped computations, the integrated overlaps
are more promising to improve scalability than the partial
overlaps.

4. Performance Analysis
We analyze effects of the presented overlap meth-

ods on the strong scaling of the calculation of the E ×
B advection term. Computations shown in this section
were carried out on the FX10 supercomputer (SPARC64
IXfx 1.848 GHz, 14.78 GFlops/core, Memory bandwidth
5.3 GB/s/core, 16 cores/node, 6D Mesh/Torus intercon-
nect, Interconnect bandwidth 5 GB/s × 4, 4800 nodes) in
the University of Tokyo. In the following results, we em-
ploy 1024 × 1024 × 16 × 16 × 16 grid points, which are
scaled down from those required for multi-scale turbulence
simulations, and decompose into 8(16, 32, 64) × 2 × 2 × 2
subdomains. Each subdomain has a MPI process and eight
OpenMP threads.

4.1 Analysis of computational costs
Before comparing the overlap methods, it is useful

to check the computational costs of the target calculation
without overlaps. Figure 3 shows the histogram of the
computational cost of the GKV code employing the wave-
number-space decomposition without overlaps of compu-
tations and communications. The calculation of the E × B
advection term accounts for 66% of the total computational
cost, and the costs of transpose communications and FFTs
are dominant. In Fig. 4, elapsed time of the E×B advection

Fig. 4 Elapsed time of the E × B advection term calculation in
the case without overlaps as a function of the number of
wave-number-space parallelization. Elapsed time of to-
tal E × B term calculation, Fourier transform, transpose
communications and the others are plotted with square,
circular, triangle and cross dots, respectively.

term calculation is plotted as a function of the number of
the wave-number-space parallelization. It is clearly shown
that the cost of transpose communications decreases more
slowly than that of computations. The cost of communica-
tions tends to be dominant as the number of wave-number
space parallelization increases, and degrades scalability. In
the case shown here, the cost of communications exceeds
that of FFTs when the number of wave-number space par-
allelization is larger than 32, where the partial overlaps are
not enough to mask communications.

Using Eq. (7), one can estimate the elapsed time in
the case with the integrated overlaps from the data without
overlaps. Since IF-X(0) and FF-X(n) are not overlapped,
the estimation is given by

S int =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CIF−X +CFF−X

n
+Ceff +

T
N

(
T ≤ NCeff

N − 1

)
CIF−X +CFF−X

n
+ T

(
T >

NCeff

N − 1

) ,
(8)

where Ceff = (n−1)(CIF−X+CFF−X)/n+CIF−Y+CRSC+CFF−Y

represents the effectively overlapped computational cost,
and to simplify the problem, we only consider two cases:
all communications are completely masked or not masked.
When the data input and output for a FFT library are also
included in the overlaps, the estimation becomes

S int = max
(
C +

T
N
,

CIN +CIF−X +CFF−X +COUT

n
+ T

)
.

(9)

This indicates that elapsed time can be reduced as the num-
ber of OpenMP threads N and of the pipelined loops n in-
crease, if the overheads of communications are negligible.

1403150-5



Plasma and Fusion Research: Regular Articles Volume 8, 1403150 (2013)

Fig. 5 Elapsed time of the E × B advection term calculation as
a function of the number of wave-number-space paral-
lelization. Square, circular and triangle dots correspond
to the cases without overlaps, with the partial overlaps,
and with the integrated overlaps, respectively. The esti-
mation of the elapsed time in the case with the integrated
overlaps, Eq. (9), is plotted as a dashed line.

Fig. 6 Strong scaling of the E × B advection term calculation.
The relative speeds (which are proportional to inverse of
the elapsed time) in the cases without overlaps, with the
partial overlaps, and with the integrated overlaps are plot-
ted with square, circular, triangle dots, respectively. The
dotted line represents the ideal speed up for reference.

4.2 Effects of the overlap methods
Elapsed time of the E × B advection term calcula-

tion in the cases without overlaps, with partial overlaps,
and with integrated overlaps is plotted as a function of
the number of wave-number-space parallelization in Fig. 5.
The estimation of the elapsed time in the case with the in-
tegrated overlaps shows good agreements with the mea-
sured values, which assures that the integrated overlaps
are successfully implemented with the smallest load im-
balance. For example, the detailed time measurement for
the case without overlaps records the computational cost

Table 2 Comparison of the performance of the E × B advec-
tion term calculation between the cases without over-
laps, with the partial overlaps, and with the integrated
overlaps (where the number of the wave-number-space
parallelization is 32).

TFlops Peak ratio
No overlap 1.21 4.01%
Partial overlaps 1.86 6.17%
Integrated overlaps 1.97 6.54%

C = 1.827 s, the communication cost T = 1.149 s and
Ceff = (n−1)(CIN+CIF−X+CFF−X+COUT)/n+CIF−Y+CRSC+

CFF−Y = 1.738 s, when the number of the wave-number-
space parallelization is 16, the number of OpenMP threads
N = 8 and the number of the pipelined loops n = 8. Since
T < NCeff/(N − 1), it is expected that the integrated over-
laps efficiently mask the communication cost. The elapsed
time for the integrated overlaps is 1.968 s, which is the
same as the estimated value (S int = C + T/N = 1.971 s)
with a negligible error. It is demonstrated that the partial
overlaps substantially reduce elapsed time from the case
without overlaps, and the integrated overlaps achieve fur-
ther speed-up. Figure 6 plots the inverse of the elapsed
time normalized in each case. While the speed-up in the
case without overlaps begins not to scale when the number
of the wave-number-space parallelization is 32, where the
communication cost becomes almost same as the compu-
tational cost, the cases with partial and integrated overlaps
achieve 94% and 96% of ideal speed-up, respectively. The
cases with overlaps also begin not to scale when the num-
ber of the wave-number-space parallelization is 64, be-
cause the communication costs are not completely masked
[e.g., TR-XY(i) is masked by IF-X(i + 1), IF-Y(i − 1) and
RSC(i − 2), but IF-X(1) cannot mask TR-XY(0)]. The re-
sults show that overlaps of computations and communica-
tions improve the strong scaling of parallel FFTs. Table 2
shows the performance of the E × B advection term cal-
culation when the number of the wave-number-space par-
allelization is 32. Compared to the case without overlaps,
the partial and integrated overlaps enhance computational
performance by 56% and 63%, respectively. The advan-
tage of the integrated overlaps clearly appears in Fig. 7,
which plots speed-up compared to the case without over-
laps. Speed-up due to the partial overlaps saturates when
the number of the wave-number-space parallelization is 32.
On the other hand, the integrated overlaps show further
speed-up when the number of the wave-number-space par-
allelization is 64. This is because the integrated overlaps
can mask a larger part of the communication cost than the
partial overlaps. Therefore, we conclude that the integrated
overlaps are more effective to improve the scalability of the
E× B advection term calculation than the partial overlaps.

1403150-6



Plasma and Fusion Research: Regular Articles Volume 8, 1403150 (2013)

Fig. 7 Speed-up compared to the case without overlaps as a
function of the number of wave-number-space paral-
lelization. The circular and triangle dots correspond to
the cases with partial and integrated overlaps, respec-
tively.

Fig. 8 Strong scaling test of the GKV code on the K computer
[where 1024×1024×64×64×32 grid is decomposed into
8(16, 32, 64)× 8× 8× 4 subdomains and each subdomain
employs 8 threads]. Square and triangle dots correspond
to the cases without overlaps and with the integrated over-
laps on the E × B term calculation, respectively.

5. Strong Scaling beyond 100 k Cores
We examine the impact of the developed overlap

method on the total performance of the GKV code. The
following computations are carried out on the K computer
(SPARC64 VIIIfx 2 GHz, 16 GFlops/core, Memory band-
width 8 GB/s/core, 8 cores/node, 6D Mesh/Torus intercon-
nect, Interconnect bandwidth 5 GB/s × 4, 88128 nodes),
employing the resolution required for the multi-scale tur-
bulence simulations.

Figure 8 shows the strong scaling of the GKV code
on the K computer. The domain decomposition in per-
pendicular wave number space allows us to employ more
than 100 k cores, and the integrated overlaps significantly

improve the strong scaling. In addition, the process map-
ping on a 3D torus network is optimized so that the trans-
pose communications are performed among the neighbor-
ing nodes located in a 3D box shape, which maximize a
bi-section bandwidth available on the torus network, and
reduces costs of MPI_ALLTOALL. Thanks to the above op-
timization techniques, the GKV code achieves almost lin-
ear speed-up beyond 100 k cores. The parallel efficiency
estimated from the Amdahl’s law is 99.9998%, which is
improved by an order of magnitude compared with the pre-
vious results (∼ 99.998% evaluated from Fig. 2 shown in
Ref. [16]). The effect of the overlaps becomes more signif-
icant as the number of cores increases. The case with the
integrated overlaps achieves 168 TFlops (8.03% of the the-
oretical peak performance) at 131,072 cores, which is 29%
higher performance than that in the case without overlaps.
To further speed up the GKV code, additional tuning for
serial and parallel algorithms will be performed in near fu-
ture.

6. Conclusion
We have presented a massively-parallelized gyroki-

netic Vlasov simulation code GKV, which is developed
to study turbulent transport in magnetically-confined plas-
mas. To address multi-scale turbulence simulations, the
parallelization of the GKV code has been extended to make
it run efficiently on peta-scale supercomputers in two steps.
First, three-dimensional domain decomposition has been
extended to four-dimensional one to increase the num-
ber of available processes. This extension introduces ad-
ditional inter-node transpose communications to calculate
the nonlinear E × B advection term, which degrades scal-
ability. Second, overlaps of computations and communi-
cations have been implemented to improve scalability by
means of MPI/OpenMP hybrid parallelization. The inte-
grated overlaps of whole calculations of the E × B advec-
tion term show better strong scaling than that in the case
with partial overlaps of each transpose and neighbor FFTs,
and achieves speed-up by 63% of that in the case with-
out overlaps. The completed two extensions significantly
improve scalability of the E × B advection term and make
substantial speed-up. The strong scaling test on the K com-
puter demonstrates that the extended GKV code is easily
scaled up beyond 100 k cores and able to realize efficient
computations of multi-scale turbulence simulations.

The newly developed overlap methods of FFTs and
transpose communications are applicable if one finds inde-
pendent multi-dimensional FFTs. For example, when one
solves two-dimensional fluid equations including some un-
knowns (e.g., density, velocity, temperature, and so on) by
a spectral method, FFTs of an unknown and transpose of
another unknown can be easily overlapped.

1403150-7



Plasma and Fusion Research: Regular Articles Volume 8, 1403150 (2013)

Acknowledgments
This work is performed with supports of the HPCI

Strategic Program for Innovative Research and the JAEA-
NIFS Collaboration Program. A part of the results is ob-
tained by early access to the K computer at the RIKEN
Advanced Institute for Computational Science. One of the
authors (S.M.) would like to thank H. Inoue and S. Tsut-
sumi for their supports to implement the parallel FFT al-
gorithm.

[1] X. Garbet, Y. Idomura, L. Villard and T.-H. Watanabe,
Nucl. Fusion 50, 043002 (2010).

[2] T.-H. Watanabe and H. Sugama, Nucl. Fusion 46, 24
(2006).

[3] D.G. Fox and S.A. Orszag, J. Comput. Phys. 11, 612
(1973).

[4] J.W. Cooley and J.W. Tukey, Math. Comput. 19, 297
(1965).

[5] C. Calvin, Parallel Comput. 22, 1255 (1996).
[6] Z. Yin, L. Yuan and T. Tang, J. Comput. Phys. 210, 325

(2005).
[7] M. Iovieno, C. Cavazzoni and D. Tordella, Comput. Phys.

Commun. 141, 365 (2001).
[8] P. Wapperom, A.N. Beris and M.A. Straka, Parallel Com-

put. 32, 1 (2006).
[9] A. Danalis, K.Y. Kim, L. Pollock and M. Swany, Proc.

IEEE/ACM Int. Conf. High Perform. Comput. (SC2005),
Seattle, USA, pp. 58 (2005).

[10] P.D. Mininni, D. Rosenberg, R. Reddy and A. Pouquet, Par-
allel Comput. 37, 316 (2011).

[11] T. Adachi, N. Shida, K. Miura, S. Sumimoto, A. Uno, M.
Kurokawa, F. Shoji and M. Yokokawa, Comput. Sci. Res.
Dev. 28, 147 (2013).

[12] Y. Idomura, M. Nakata, S. Yamada, M. Machida, T. Ima-
mura, T.-H. Watanabe, M. Nunami, H. Inoue, S. Tsutsumi,
I. Miyoshi and N. Shida, Int. J. High Perform. Comput.
Appl., DOI: 10.1177/1094342013490973 (2013).

[13] S. Maeyama, A. Ishizawa, T.-H. Watanabe, N. Nakajima,
S. Tsuji-Iio and H. Tsutsui, Comput. Phys. Commun., DOI:
10.1016/j.cpc.2013.06.014 (2013).

[14] M.A. Beer, S.C. Cowley and G.W. Hammett, Phys. Plasmas
2, 2687 (1995).

[15] M. Frigo and S.G. Johnson, Proc. IEEE 93, 216 (2005).
[16] T.-H. Watanabe, Y. Todo and W. Horton, Plasma Fusion

Res. 3, 061 (2008).

1403150-8


