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On a Nonlinear Dispersion Effect of Geodesic Acoustic Modes
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The nonlinear dispersion relation of the geodesic acoustic modes (GAMs) is investigated for tokamaks with
a high safety factor and low magnetic shear. We focus on the Reynolds stress as a nonlinearity, which is truncated
at the third order of the GAM amplitude. The real frequency of the GAM is modified according to the phase
of the nonlinear force acting on the GAM, which depends on the turbulence decorrelation rate. The nonlinear
frequency shift is much larger than that from the finite gyro-radius effects in the linear theory, when the poloidal
turbulent E × B velocities are comparable to the diamagnetic drift velocity. Under such circumstances, the group
velocity is strongly enhanced and becomes comparable with the radial phase velocity. In addition, the magnitude
of the nonlinear effects is also evaluated using experimental parameters.
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1. Introduction
Zonal flows have attracted much attention in the re-

search of magnetically confined plasmas [1]. A geodesic
acoustic mode (GAM) is a type of zonal flow with a fi-
nite real frequency, which is due to the geodesic curva-
ture of a toroidal magnetic field [2]. Coupling between
the GAMs and the turbulence has been observed in many
toroidal devices [3–6], and can even affect the level of tur-
bulence transport [7, 8]. The excitation of GAMs due to
the nonlinear coupling with the turbulence with a broad
spectrum [9,10], and with coherent drift waves [11,12] has
been theoretically studied. The nonlinear theory of the
GAMs has been developed to include higher order nonlin-
ear coupling such as the generation of the second harmon-
ics [13–15], and the coupling with the zero frequency zonal
flows (ZFs) [16–19]. Recently, in a process called GAM
channeling, the ion heating rate of the GAMs driven by
energetic particles was reported to be nonnegligible [20].
Evidently, the various important roles of the GAMs are in-
creasingly being recognized.

The GAMs have nonlocal effects on plasmas, be-
cause they form radial eigenmodes, and propagate ra-
dially with a finite group velocity. Radial eigenmodes
have been observed experimentally [21–23], and explained
theoretically [24–27]. The radial group velocities of the
GAMs have been studied using the linear dispersion rela-
tion based on the gyro-kinetic formalism [28], and the ratio
between the group and phase velocities has been predicted

author’s e-mail: sasaki@riam.kyushu-u.ac.jp

as vg/vp ∼ q2
r ρ

2
s � 1, where vg, vp, qr, ρs are the group and

phase velocities, the radial wavenumber of the GAM, and
the ion gyro radius based on the sound velocity, respec-
tively [29, 30]. Nonlinear simulations of the GAMs have
pointed out that the group velocity is strongly enhanced
by the nonlinearity as vg/vp ∼ 100q2

r ρ
2
s [33]. Attempts to

measure the propagation characteristics of the GAMs in
experiments have begun [31, 32]. Hence, a physical under-
standing of the nonlinear effect on the GAM propagation is
in high demand. The real frequency of the GAM is also im-
portant for a novel method to measure the ion mass, called
GAM spectroscopy, which is based on the GAM frequency
and the radial eigenmode [34]. There are many studies on
the frequency shift due to linear influences such as plasma
shaping [35, 36], the finite ion gyro radius [27–30, 37], and
impurities [38,39]. However, the nonlinear frequency shift
has not been understood, so the nonlinear frequency shift
should be investigated theoretically.

Nonlinearities such as the Reynolds stress can drive
the GAMs [1]. For a high safety factor and low magnetic
shear, the Reynolds stress becomes important compared
with the dynamical shearing induced Winsor drive [9].
(For example, such plasmas are obtained with a reversed
shear tokamak configuration.) Therefore, it is worthwhile
to investigate the nonlinear characteristics of the GAMs
associated with the Reynolds stress. In this study, the non-
linear dispersion relation of the GAM is theoretically in-
vestigated in a simple magnetic geometry. Based on the
wave kinetic theory, the Reynolds stress is evaluated, and
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the nonlinear dispersion relation, which includes the non-
linearities of the drift wave turbulence and the GAM, is de-
rived. Analytical expressions for the nonlinear frequency
shift and the propagation velocity are obtained and the im-
portance of the nonlinear effect on the frequency shift and
the propagation velocity is elucidated by evaluating them
with realistic parameters.

2. Model
We consider a tokamak plasma with drift wave tur-

bulence and GAMs. The turbulence is fully developed
because of the background gradient and the GAMs are
driven by coupling to the turbulence. The zero frequency
zonal flow (ZF) is not considered here. In this section, a
model for analyzing the nonlinear dispersion relation of
the GAMs is introduced, focusing on nonlinearity of the
Reynolds stress.

2.1 Model equation for GAM dynamics
The basic equations for the nonlinear GAM dynamics

are presented in this subsection. We consider a high aspect
ratio, circular cross-section toroidal plasma. In this study,
we focus on plasmas with high safety factor q � 1 and
weak magnetic shear, where the GAMs can be excited. The
toroidal coordinates (r, θ, ζ) are used, where ∇r,∇θ,∇ζ are
in the radial, poloidal and toroidal directions, respectively.
The fluctuations of the GAM, which have toroidal symme-
try, are governed by the vorticity, parallel momentum, and
continuity equations [40],

∂tU + α∂r
〈
n sin θ

〉
+ γdampU = −∂2

r
〈
Πrθ

〉
, (1a)

∂tv‖ − μ∂2
⊥v‖ + ∂‖n = 0, (1b)

∂tn − 2α−1∂−1
r U sin θ + ∂‖v‖ = 0. (1c)

Here, U, v‖, and n are the toroidal component of the vortic-
ity averaged over the magnetic surface and normalized to
the drift wave frequency ω∗, the parallel velocity normal-
ized to the sound velocity cs, and the density perturbation
normalized to the equilibrium density, respectively. The
units for time and space are chosen as the inverse of the
typical GAM frequency ωG =

√
2cs/R, where R is the ma-

jor radius, and the ion sound gyro-radius ρs. A flux surface
average is represented as

〈 · · · 〉 = (2π)−1
∮ · · · dθ. The par-

allel derivative ∂‖ is (
√

2q)−1∂θ. The relevant flux surface
averaged Reynolds stress component is

〈
Πrθ

〉
. The dimen-

sionless parameter α is ωGR/(ω∗ρs). The coefficient γdamp

in the vorticity equation represents the collisional damping
rate, and the term μ∂2⊥v‖ in the parallel momentum equa-
tion denotes the parallel turbulent viscosity and the Landau
damping, which are treated as parameters. In these model
equations, we focus on the effect of the nonlinearity of the
Reynolds stress on the dispersion relation, whereas other
nonlinear effects such as the parallel nonlinearity are ne-
glected. We also neglect the driving force of the GAM
by the modulation of turbulent particle transport [9], which
vanishes in the limit of weak magnetic shear.

We consider a stationary state in which a GAM prop-
agates outward with monochromatic wavenumber p > 0,

U = ue−iωt+ipr + c.c., (2)

where u is the Fourier component of the GAM vorticity,
and is chosen to be real. For the parallel velocity and den-
sity, only the linear response to the vorticity needs to be
considered. Eliminating n and v‖ from Eqs. (1a)-(1c), the
nonlinear dispersion relation becomes

iΩu + p2〈Πrθ(ω, p)
〉
= 0, (3a)

Ω = ω +

{
− ω + 1

2q2(ω + iμp2⊥)

}−1

+ iγdamp

≈ ω − 2q2ω

2q2ω2 − 1
+ i

(
μp2⊥
2q2
+ γdamp

)
, (3b)

where
〈
Πrθ(ω, p)

〉
is the (ω, p) component of the Reynolds

stress, and p⊥ is the perpendicular wavenumber. We as-
sume the terms μp2⊥, γdamp are small, and only keep the
lowest order of the linear damping rates, μp2⊥, γdamp, in
order to keep the argument transparent. This assumption
does not conflict with the situation q � 1, because the
Landau damping is a decreasing function of the safety fac-
tor [28]. The imaginary part of Ω is evaluated by using
the linear GAM frequency, which is shown below. In
the absence of the Reynolds stress, the dispersion rela-
tion, Eq. (3a), becomes Ω = 0, which reproduces the linear
GAM dispersion relation as

ω = ωL − i
q2

1 + 2q2

(
μp2⊥
2q2
+ γdamp

)
, (4)

where ωL is the linear GAM frequency, defined as ωL =√
1 + 1/(2q2). In the derivation of Eq. (4), we assume

Imω � 1. The Reynolds stress changes the GAM disper-
sion relation in accordance with Eq. (3a). It is evaluated in
the next subsection.

2.2 Evaluation of Reynolds stress
The flux surface averaged Reynolds stress from the

drift wave turbulence is given by

〈
Πrθ

〉
(r, t) =

∫
krkθ

(1 + k2⊥)2
Nk(r, t)d2k, (5)

where kr, kθ, and k⊥ are the radial, poloidal and per-
pendicular components of the wavenumbers of the drift
wave turbulence, respectively. The k-Fourier component
of the action of the turbulence is denoted as Nk(r, t) =
(1 + k2⊥)2|φ̃k(r, t)|2, where |φ̃k(r, t)| is the envelope of the
k-Fourier component of the turbulence potential, normal-
ized to ω−2

G B−2ρ−4
s . Here, the variable k of Nk(r, t) repre-

sents the fast variation of the drift wave fluctuations, and r
represents the slow variations induced by the GAM. The
background turbulence has a short correlation time, so that
the Reynolds stress has a component that rapidly changes
in time, the noise term. We neglect the noise effect, which
is beyond the scope of this study. Equation (5) can be cal-
culated from the modulation component of Nk(r, t), which
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can be evaluated on the basis of the wave kinetic equa-
tion [41]. The action of the turbulence is modulated by the
spatial gradient of the Doppler shift of the turbulence fre-
quency by the GAM [1]. Here, we neglect the effect of tur-
bulence group velocity. The relevant Fourier component of
the Reynolds stress can be expanded in terms of the GAM
amplitude u as [19]

−p2〈Πrθ(ω, p)
〉
= Γ1u − Γ2u3 + · · · , (6)

where Γ1 comes from the quasi-linear response of the tur-
bulence to u, and Γ2 is the higher order response of the
turbulence, which can be expressed as

Γ1 = c1

(
1 − i

ω

Δω

)−1
(7a)

Γ2 = c2

{
2

(
1 +
ω2

Δω2

)−1 (
1 − i

ω

Δω

)−1

+

(
1 − i

ω

Δω

)−2
(
1 − i

2ω
Δω

)−1 }
. (7b)

The nonlinear decorrelation rate of the turbulence is de-
noted by Δω, and the normalized coefficients that depend
on the spectrum of the turbulence c1 and c2 are defined as

c1 = p2
∫

k2
θ

(1 + k2⊥)2Δωk
N(0)

k d2k, (8a)

c2 = p2ω2
∗

∫
4k4
θ

(1 + k2⊥)3Δω3
k

N(0)
k d2k. (8b)

Here N(0)
k is the action without modulation by the GAMs,

and Δωk is the nonlinear damping rate of the k-Fourier
component of the drift waves. The coefficients c1 and c2

are positive so that the first and second terms in the right
hand side of Eq. (6) represent a quasilinear driving force
and a nonlinear stabilization force of the GAM, respec-
tively. As in Eq. (6), the expansion of the Reynolds stress
has only the terms of odd powers of u in this case, be-
cause the largest contribution in the higher order nonlin-
earity comes from the back interaction of generating the
second harmonics. If the coupling between the GAMs and
the ZF exists, the terms with even powers of u appear in the
expansion of the Reynolds stress [19], which is expected to
change the nonlinear dispersion relation.

In this study, we assume strong turbulence, and treat
the amplitude of the turbulence |φ̃k | as being of orderω∗k−2⊥ .
Moreover, we take the toroidal vorticity of the turbulence
to be comparable to the drift wave frequency ω∗, and as-
sume the GAM amplitude to be small (u2 � 1), so that
we can truncate the Reynolds stress after the third order of
u. Care must be taken with the ordering of c1: it can be
estimated from the definition Eq. (8a) as

c1 ∼
p2k2
θω∗

k4⊥
, (9)

and depends on the choice of p/k⊥. In this study, we con-
centrate on c1 ∼ (ω∗)−1 < 1, i.e., we are interested in

the range of wavenumbers p/k⊥ ∼ (ω∗)−1. The frequency
shift and the propagation velocity depend strongly on c1,
as shown in the next section. The strength of the nonlinear
damping rate of the GAM is characterized by c2, whose
ordering is c2/c1 ∼ 4k2

θ . We assume c2/c1 is of order unity.

3. Nonlinear Dispersion Relation
In this section, we derive the GAM dispersion rela-

tion, including the nonlinear effects, and investigate the
real frequency and characteristics of propagation. The non-
linear dispersion relation is obtained by substituting the ex-
pression for the Reynolds stress Eq. (6) into Eq. (3a) as

−ImΩ + Re
[
Γ1 − Γ2u2]

+ i

{
ReΩ + Im

[
Γ1 − Γ2u2]} = 0. (10)

The real and imaginary parts of Eq. (10) determine the sat-
uration amplitude and nonlinear frequency of the GAM.
The real part of the Reynolds stress represents the driving
and damping terms for the GAM. The imaginary part of
the Reynolds stress modifies the real frequency. In other
words, the phase difference between the GAM oscillation
and the nonlinear force by the Reynolds stress affects the
real frequency.

3.1 Saturation amplitude
In general, the frequency is complexω = ωr+iγ, and γ

determines the growth rate of the mode. When the nonlin-
ear stabilization effects are included, γ correspondingly be-
comes smaller at an increase of the GAM amplitude. The
growth of the GAM saturates when γ = 0. From now on,
we omit the subscript of the real frequency asωr → ω. The
saturation amplitude of the GAM is determined by the real
part of Eq. (10) with assumption of purely real ω as

u2 =
−ImΩ(ω) + ReΓ1(ω)

ReΓ2(ω)
. (11)

The first term in the numerator is the linear damping rate,
the second term is the quasi-linear driving by the turbu-
lence, which stems from the quasi-linear response of the
Reynolds stress to u. The denominator reflects the non-
linear stabilization effect. Here, the GAM is assumed to
satisfy the excitation condition ImΩ < ReΓ1. We note
that the frequency ω includes the nonlinear effects, and is
a function of the amplitudes of the GAM and the turbu-
lence. Therefore, the saturated amplitude is affected by the
nonlinear frequency. The self-consistent solution can be
obtained by solving Eq. (11) with the nonlinear frequency.
In this article, the condition u � 1 is used, that is, the
parameters are chosen near the threshold of the excitation
condition.

3.2 Nonlinear frequency
The equation for the nonlinear frequency is obtained

from the imaginary part of Eq. (10), which can be rewritten
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as

Δ ≡ ω2 − ω2
L +

(
ω2 − 1

2q2

) {
c1

Δω

(
1 +
ω2

Δω2

)−1

− 6c2u2

Δω

(
1 +
ω2

Δω2

)−1 (
1 +

4ω2

Δω2

)−1 }
= 0.

(12)

The first two terms produce the linear GAM frequency
without the Reynolds stress. The third and fourth terms are
the nonlinear effects, which result from the imaginary parts
of the quasi-linear driving force and nonlinear damping
force due to the ambient turbulence through the Reynolds
stress. In other words, the origin of the nonlinear effects is
the phase delay between the nonlinear force and the GAM
oscillation.

The analytical expression for the nonlinear frequency
is derived as follows. Recall that the ordering used here is
Δω−2 ∼ u2 � 1. We assume that Δω ∼ u are less than
unity, and that their squares are much less than unity. The
dispersion relation can be expanded with this ordering in
terms of Δω−2 ∼ u2 � 1 as follows.

Δ = Δ(1) + Δ(2) + · · · , (13a)

Δ(1) ≡ ω2 − ω2
L +

c1

Δω

(
ω2 − 1

2q2

)
, (13b)

Δ(2) ≡ −
(
ω2 − 1

2q2

) {
c1

Δω

(
ω

Δω

)2
+ 6

c2u2

Δω

}
. (13c)

The perturbative solution is assumed to have the form of
ω = ω1 + δω, where δω/ω1 � 1. The leading term ω1

is the solution of Δ(1) = 0, and the perturbation part δω is
evaluated from the relation

δω = −Δ(2)(ω1)

[
∂Δ(1)

∂ω

∣∣∣∣∣∣
ω=ω1

]−1

. (14)

Then, the analytical solution is derived as

ω2
1 =
ω2

L + c1/(2q2Δω)

1 + c1/Δω
, (15a)

δω =
1

2ω1

(
1 +

c1

Δω

)−2
{

c1

Δω

(
ω1

Δω

)2
+ 6

c2u2

Δω

}
.

(15b)

The nonlinear frequency strongly depends on the nonlinear
decorrelation rate Δω of the turbulence, which corresponds
to the lifetime of the turbulent eddies. In the zero lifetime
limit, the nonlinear effects disappear, and the solution ap-
proaches the solution in the linear case, ωL. A finite life-
time of the turbulent eddies evidently leads to a frequency
downshift, which can be estimated as

ω1 ∼ ωL

(
1 − c1

2Δω

)
∼ ωL

(
1 − p2βNL

)
, (16)

where βNL is the order of k2
θ/k

4⊥ ∼ k−2⊥ � 1. Therein we
use the order estimate Δω ∼ ω∗. The finite gyro-radius
effect on the real frequency was investigated with linear

gyro-kinetic theory, and the frequency shift is ω ≈ ωL(1 +
βg p2), where the coefficient βg is of order unity [27–30,37],
(i.e., much smaller than the shift from the nonlinear effect
found in the present study). Thus the nonlinear frequency
shift can greatly exceed the frequency shift due to the finite
gyro-radius effects.

Numerical turbulence simulations show that the pa-
rameter βNL can be as large as 40 [33], which is of simi-
lar magnitude as the result obtained in this study but with
the opposite sign. However the model of [33] is different
from our model as follows: a two-fluid model is employed
(electron dynamics is included), the assumed turbulence is
the ion temperature gradient mode with ballooning struc-
tures, the magnetic configuration includes the effect from
the vicinity of the separatrix, and the dominant nonlinear
effect is the turbulent transport modulation, which is not
considered in this study. The set of normalized parame-
ters in [33] is estimated as kθ = 0.2, p = 0.1, c1 = 0.3,
c2 = 0.2, ω∗ = 2, u = 2. A normalized GAM amplitude
of order unity is numerically obtained in [33], whereas we
assume the small amplitude u � 1.

3.3 Nonlinear propagation
The characteristics of the radial propagation of the

GAM are modified by the nonlinearity. The radial phase
velocity vp is defined as vp = ω/p. The phase velocity be-
comes smaller due to the downshift of the GAM frequency
induced by the turbulence effect. The radial group velocity
vg is

vg =
∂ω

∂p
≈

(
∂c1

∂p
∂

∂c1
+
∂c2

∂p
∂

∂c2

)
(ω1 + δω), (17)

and can be written as

vg1 ≡
(

2c1

p
∂

∂c1
+

2c2

p
∂

∂c2

)
ω1

= −(ω1 p)−1 c1

Δω

(
1 +

c1

Δω

)−2
, (18a)

vg2 ≡
(

2c1

p
∂

∂c1
+

2c2

p
∂

∂c2

)
δω

= (pω1)−1
(
1 +

c1

Δω

)−4
[ ⎛⎜⎜⎜⎜⎝1 − c2

1

Δω2
+

c1

2q2Δω

⎞⎟⎟⎟⎟⎠
×

{
c1

Δω

(
ω1

Δω

)2
+

6c2u2

Δω

}
− c2

1

ω2
1Δω

2

(
ω1

Δω

)2
]
.

(18b)

Here we assume that only c1 and c2 have a p dependence.
The dominant contribution to the group velocity is de-
noted as vg1. The velocity vg2 is a smaller correction with
vg2/vg1 ∼ Δω−2 ∼ u2 � 1. Since vg1 < 0, the sign of
the group velocity is negative, which is the opposite of the
linear prediction. When p is positive, the phase velocity
is always positive (the phase of the GAM propagates out-
ward), but the direction of the group velocity becomes neg-
ative due to the turbulence response. Therefore the phase
and group velocities are in the opposite directions. The
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difference in the propagation directions of the phase and
group velocities has also been observed in Landau-fluid
ITG turbulence simulations [42]. In the present study, the
group velocity is found to be strongly enhanced by the non-
linearities. The GAM frequency without the turbulence
drive does not have a p-dependence in the present article
so that the group velocity of the GAM without turbulence
response becomes zero vg = ∂pω = 0. In this limit, the
magnitude of the group velocity deviates from that of the
phase velocity. Note again that linear dispersive properties
of the GAM, which come from the finite Larmor radius ef-
fects, are neglected in this study. However, the turbulence
Reynolds stress makes ω depend on p, and the magnitudes
of the phase and the group velocities approach each other.
The order of the ratio between the phase and group ve-
locities is roughly vg/vp ∼ c1/Δω ∼ 1, which is much
larger than that predicted by the linear gyro-kinetic theory,
vg/vp ∼ O(p2) ∼ 0.01 [29, 30], where p ∼ 0.1 is used.
Thus the turbulence potentially causes a rapid radial prop-
agation of the energy and momentum of the GAM.

4. Estimates Using Experimental Pa-
rameters
In this section, we discuss the validity of the assump-

tions in the nonlinear model, using typical experimental
values. Next, we evaluate the nonlinear frequency and
propagation velocity.

First, we discuss the consistency of the truncation
model for the nonlinearity. The nonlinear Reynolds stress
can be expanded in terms of the GAM vorticity u. The
estimated experimental values of u are shown in Table 1
[5,6,21,43]. Because the normalized vorticity is estimated
to be u ∼ 0.3 in several experiments, the truncation of the
Reynolds stress at the third order O(u3) is possible while
maintaining ten percent accuracy.

Next, we evalute the nonlinear frequency shift of the
GAM for the experiments at JFT-2M [21] and CHS [43].
The evaluated set of the normalized parameters (c1, c2/c1,
1/Δω, c1/Δω, u) is shown in Table 2. By inserting the

Table 1 Normalized vorticity (see Sec. 2.1) estimated from the
experiments.

JFT-2M [21] CHS [43] HL-2A [5] DIIID [6]
u 0.3∼0.7 0.08 0.3 0.3

Table 2 Set of normalized parameters (see Sec. 2.2) evaluated
from the experiments.

c1 c2/c1 1/Δω c1/Δω u
JFT-2M [21] 0.6 2.1 0.27 0.24 0.3
CHS [43] 0.01 1.6 0.33 0.01 0.075

values from Table 1 into the analytical solution for the fre-
quency Eqs. (15a), (15b), the nonlinear frequency shifts is
ω/ωL ≈ 0.88 for the JFT-2M experiment and ω/ωL ≈ 0.99
for the CHS experiment. The frequency shift in the JFT-
2M experiment is not negligible. The higher order cor-
rections, c1ω

2
1/Δω

3, c2u2/Δω, have much smaller contribu-
tions, whose values are c1ω

2
1/Δω

3 ∼ 0.017, c2u2/Δω ∼
0.07 for JFT-2M, and c1ω

2
1/Δω

3 ∼ 0.001, c2u2/Δω ∼
0.001 for CHS. One clearly has to take the frequency shift
of the GAM into account in the case of large amplitude tur-
bulence. In this study, the effect of the Reynolds stress is
focused on. It has to be noted that the dynamic shearing [9]
is also predicted to be effective in the finite magnetic shear
case as in the JFT-2M experiment.

The nonlinear propagation characteristic can be eval-
uated for the experiments at JFT-2M [21]. The ratio of
the phase velocity to the group velocity is estimated to be
vg/vp ∼ 0.4 in this case, so the group velocity can be com-
parable to the phase velocity. Therefore, the nonlinear en-
hancement of the group velocity should be experimentally
observable.

5. Summary and Discussion
The nonlinear frequency shift and nonlinear propaga-

tion characteristics of GAMs driven by turbulence have
been investigated. We have focused on plasmas with
high safety factor and low magnetic shear. The nonlin-
ear dispersion relation has been derived from the calcula-
tions of Reynolds stress based on the wave kinetic equa-
tion. Thereby we assumed the vorticity of the GAM to be
smaller than the drift wave frequency, and have truncated
the nonlinearity at the third order of the GAM amplitude.

The real frequency of the GAM is modified by the
nonlinearities of the turbulence and the GAM; the tur-
bulence effect introduces a frequency downshift, and the
nonlinear GAM stabilization effect upshifts the frequency,
with the net frequency shift being downward. The fre-
quency shift stems from the quasi-linear driving force on
the GAM which arises from the turbulence modulation.
The magnitude of the frequency shift is much larger than
expected from the linear theory. The frequency shift is a
function of the square of the GAM wavenumber so that
the radial group velocity is strongly affected by the non-
linearity. The propagation direction of the group velocity
also changes as a result of the nonlinearity. When the ra-
dial wavenumber of the GAM is positive (outward radial
phase velocity), the direction of the radial group velocity
is inward. The radial group velocity is much larger than
that found from the linear theory, and can be comparable
to the radial phase velocity. The Reynolds stress does not
only serve as a driving force of the GAM, but also modi-
fies its characteristics by leading to a nonlinear dispersion
relation.

Finally, by using realistic experimental parameters,
we discuss the limitations of our simple analytical model.
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It is to be noted that the bicoherence analysis in the JFT-2M
experiment indicates the importance of the nonlinear cou-
pling of the density fluctuations of the GAMs [44]. More-
over, it has been reported that the dynamical shearing of the
turbulence by the GAMs works as a driving force for the
GAMs for the large magnetic shear [9]. A unified study of
the nonlinearities of density fluctuation and the Reynolds
stress on the dispersion relation is left to the future. In ad-
dition, in some scenarios, it may be invalid to truncate the
nonlinearity at the third order of the normalized GAM vor-
ticity for u ∼ 1 [21]. Thus, an analytical computation of
the Reynolds stress for u ∼ 1 is left to future work.
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