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While expressing the ideal fluid/plasma equations in terms of Eulerian variables, we encounter a non-
canonical Hamiltonian structure. In other words, Poisson operators determining symplectic geometry have non-
trivial kernels that foliate phase spaces. There are several different recipes for “canonicalizing” such Hamiltonian
formalisms by either reducing or extending phase spaces. Clebsch parametrization is a well-known method for
reducing phase spaces. Here we introduce a new scheme that generalizes the Clebsch parametrization. Using the
new set of variables, we delineate a fundamental difference between the reduced magnetohydrodynamic equations
and the two-dimensional Euler equations.
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1. Introduction
Reduced magnetohydrodynamic (RMHD) equations

are used to describe the dynamics of plasma in the limit of
low-β [1–4], which may be viewed as an extension of the
two-dimensional Euler vorticity (2DEV) equation for an
ideal incompressible fluid by coupling with an electromag-
netic field. One may express the RMHD or 2DEV equa-
tion in a non-canonical Hamiltonian form [5,6], which has
certain conservation laws arising from both symmetries in
the Hamiltonian and a “topological defect” (kernel) of the
Poisson bracket. The constants of motion associated with
the latter, which are typical in a non-canonical system, are
called Casimir invariants. A Casimir invariant foliates the
phase space, so that the dynamics is constrained on a leaf
of the Casimir invariant.

Clebsch parametrization [7] of Eulerian variables is
often a useful method of canonicalizing a non-canonical
system [8, 9]. The key is to express the vorticity in a Cleb-
sch 2-form [10]. The vorticity equation of 2DEV is then
divided into a pair of equations governing the canonical
variables. There is a fundamental relationship between the
Clebsch parameters and the Lagrangian description of fluid
motion [11]; the latter is naturally canonical as an adjoint
representation of the Lie algebra of diffeomorphism.

Interestingly, in the RMHD equations, a canonical
variable may be chosen to be an arbitrary function of the
Clebsch parameter of the magnetic field (the magnetic flux
function), and the equations of motion can be expressed in
a generalized flux coordinate representation. In this study,
we show that different canonical representations have dif-
ferent nonlinear terms, each describing a “sub-class” of
nonlinear dynamics with a different “strength” of nonlin-
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earity.

2. Hamiltonian Model
2.1 Euler fluid

We begin with a short review of the Hamiltonian for-
malism. Let u be a state vector belonging to a Hilbert
space V and H(u) be a Hamiltonian (a smooth functional
on V). A general Hamilton’s equation of motion may be
expressed as

∂tu = J∂uH(u),

where J is an antisymmetric operator called the Poisson
operator [11]. Motion occurs in the direction perpendic-
ular to the gradient of H(u) (hence, in orbits). Thus, the
energy (Hamiltonian) is conserved.

In a canonical Hamiltonian system, the Poisson oper-
ator can be represented by a symplectic operator

JC =

(
0 I
−I 0

)
,

in an appropriate coordinate system. A more general
Hamiltonian system may have a general Poisson operator
that cannot be transformed into the form of Jc [12]. In par-
ticular, when J has a nontrivial kernel (thus, cokernel), we
say that the system is “non-canonical”. A functional C(u)
such that ∂uC(u) ∈ Ker(J) is called a Casimir invariant.

Now, we formulate the Hamiltonian and Poisson op-
erators of the 2DEV equation. Let U be the vorticity of an
ideal two-dimensional incompressible fluid, which obeys
2DEV (the curl of Euler’s equation):

∂tU + [φ,U] = 0, (1)

where the bracket is defined as

[ f , g] = ∂x f∂yg − ∂y f∂xg, (2)
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and φ is the stream function (Δφ = U). The fluid energy
can be expressed as

H =
1
2

∫
|∇φ|2d2x = −1

2

∫
Δ−1U · Ud2x, (3)

where Δ−1 is the inverse operator of Δ. Using Eq. (3) as a
Hamiltonian represented on a function space of U, we may
express Eq. (1) in a Hamiltonian form:

∂tU = J(U)∂U H(U), (4)

where J(U)◦ = −[U, ◦] (◦ means insertion). The corre-
sponding Poisson bracket is

{F,G} = 〈∂U F,J(U)∂UG〉
= −

∫
∂U F[U, ∂UG]d2x

=

∫
U[∂U F, ∂UG]d2x,

which is a typical Lie-Poisson bracket (a Lie-Poisson
bracket is known to satisfy Jacobi’s identity [9]). Evi-
dently, for an arbitrary smooth function f , a functional

C(U) =
∫

f (U)d2x, (5)

is a Casimir invariant; i.e., {C, F} = 0 for every F(U). The
enstrophy

∫
U2d2x is a special case of Eq. (5).

Introducing Clebsch parameters Q and P, we can for-
mulate a “canonicalized” sub-class of the 2DEV in Eq. (4).
Let us set

U = [Q, P], (6)

which may be viewed as a Clebsch 2-form [10]. In terms
of Q and P, the Hamiltonian of Eq. (3) is rewritten as

H(Q, P) = −1
2

∫
Δ−1[Q, P] · [Q, P]d2x. (7)

Invoking the canonical Poisson operator (symplectic oper-
ator)

JC =

(
0 I
−I 0

)
,

we consider the canonical Hamilton’s equation

∂t

(
Q
P

)
= JC

(
∂QH
∂PH

)
= JC

( [
φ, P

]
− [
φ,Q

]
)

=

( − [
φ,Q

]
− [
φ, P

]
)
. (8)

These equations are consistent with the original Eq. (4). In
fact,

∂tU = [∂tQ, P] + [Q, ∂tP]

= [P, [φ,Q]] − [Q, [φ, P]]

= −[φ, [Q, P]] = −[φ,U],

where we used Jacobi’s identity

[ f , [g, h]] + [g, [h, f ]] + [h, [ f , g]] = 0. (9)

However, the system of Eq. (8) is not equivalent to Eq. (4)
because the Clebsch 2-forms in Eq. (6) are not “complete”,
i.e., they do not span the entire space of 2-forms [10]. In
fact, U of the form in Eq. (8) is restricted to have zero cir-
culation:∫

Ud2x =
∫

[Q, P]d2x = 0. (10)

Similarly, we observe

Cch =

∫
QUd2x

=

∫
Q[Q, P]d2x = 0. (11)

This constant of motion corresponds to the “cross-
helicity”, which will be given an important role in RMHD
(see also [13]).

By these constraints, the system of Eq. (8) becomes a
sub-class of the original 2DEV equation, Eq. (4), whereas
the number of variables increases. As U obeys Eq. (4),
both Q and P are transported by the same flow

[
φ, ◦]. How-

ever, the excess variable Q will be given an important role
in RMHD.

2.2 Reduced MHD
The RMHD equations can be applied to the analysis of

a large-aspect-ratio tokamak (Fig. 1). The ideal MHD
equations are expressed as

∂t B + (u · ∇) B = (B · ∇) u, (12)

∂tU + ∇ × (u · ∇) u = ∇ × (B · ∇) B, (13)

∇ · B = 0, ∇ · u = 0, (14)

for a magnetic field B(x, t) and a vorticity field U(x, t).
Further, u(x, t) is the fluid velocity. We consider the follow-
ing ordering in terms of the inverse aspect ratio, ε = a/R0,
where R0 is the toroidal radius, and a is the poloidal radius:

∂x, ∂y ∼ 1, ∂z ∼ ε, ∂t ∼ ε,
Bx, By ∼ ε, Bz ∼ 1 + ε2, vx, vy ∼ ε. (15)

We introduce the poloidal flux ψ that is connected to a
magnetic field:

B = Bzez + ez × ∇ψ. (16)

Fig. 1 Geometry of the tokamak coordinate system.
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The equations of ε2 ordering yield an RMHD system,

∂tψ + [φ, ψ] = 0, (17)

∂tU + [φ,U] = [ψ, J], (18)

where the current density is denoted by J = Δψ.
Defining the Hamiltonian and Poisson operator as

H =
1
2

∫ (
|∇φ|2 + |∇ψ|2

)
d2x

= −1
2

∫ (
Δ−1U · U + Δψ · ψ

)
d2x, (19)

J(U, ψ) =

( − [U, ◦] − [
ψ, ◦]

− [
ψ, ◦] 0

)
, (20)

respectively, we may express the RMHD equations in a
non-canonical Hamiltonian form [6]:

∂t

(
U
ψ

)
= J(U, ψ)

(
∂U H
∂ψH

)
. (21)

The corresponding Poisson bracket is

{F,G} =
∫

Wi j

[
∂ξi F, ∂ξ jG

]
d2x,

Wi j =

[
0 ψ

ψ U

]
,

where (ξ1, ξ2) = (ψ,U). Now, we canonicalize Eq. (21).
In the Clebsch parametrization in Eq. (6), we relate Q, P
with ψ; if we set ψ = ψ(Q, P), the canonical equations of
motion become

∂t

(
Q
P

)
= JC

(
∂QH
∂PH

)

=

( − [
φ,Q

] − (∂Pψ)J
− [
φ, P

]
+ (∂Qψ)J

)
. (22)

In comparison with Eq. (8), the RMHD system in Eq. (22)
includes the additional terms representing the magnetic
force.

Here, ψ(Q, P) represents the following two types of
settings. If we set ψ = QαPβ (α and β are real constants),
the canonical equations become

∂t

(
Q
P

)
= JC

(
∂QH
∂PH

)

=

( − [
φ,Q

] − βQαPβ−1J
− [
φ, P

]
+ αQα−1PβJ

)
. (23)

Alternatively, setting ψ = Qα + Pβ, we obtain

∂t

(
Q
P

)
= JC

(
∂QH
∂PH

)

=

( − [
φ,Q

] − βPβ−1J
− [
φ, P

]
+ αQα−1J

)
. (24)

Interestingly, the magnetic term (including the current J)
changes depending on the representation of the magnetic

flux function. Setting J = 0 decouples Q and P, and
then the systems of Eqs. (23) and (24) reduce to 2DEV in
Eq. (8).

In Table 1, we summarize various forms of the 2DEV
and RMHD equations. The corresponding Hamiltonians
and Poisson operators are given in Table 2.

As in 2DEV, the canonicalized systems are sub-
classes of the general non-canonical RMHD system in
Eq. (21). Let us examine the relationships between the
original non-canonical RMHD system and its canonical-
ized systems by observing the Casimir invariants,

C(U, ψ) =
∫

Uh(ψ)d2x, (25)

where h is an arbitrary smooth function. The cross-helicity
[10] is a special case of C with h(ψ) = ψ. In the canon-
icalized system of ψ = Qα, the cross-helicity is fixed at
zero;

Cch =

∫
Qα[Q, P]d2x

=
1

α + 1

∫
[Qα+1, P]d2x = 0, (26)

where Cch is the cross-helicity. Similarly, the systems in
Eqs. (23) and (24) also assume zero cross-helicity. An ad-
vantage of the formulations of Eq. (22), in comparison to
the formula given in [6], is that we can solve equations
with fewer variables. In numerical analysis, this is an ad-
vantage. Then, because the interactions that contain the
current density are represented by the power of canonical
variables, local algebraic analysis is possible (Section 3).
We must note that formulations containing higher powers
are difficult to solve.

3. Application to Local Analysis
As an application of the canonicalized Hamiltonian

formalism, we study the effect of the magnetic term in an
RMHD system using a local analysis. Setting α = 2, β = 1
in Eq. (23), we obtain

∂tQ + [φ,Q] = −Q2J, (27)

∂tP + [φ, P] = 2QPJ. (28)

The poloidal flux is ψ = Q2P and the current density is
J = Δ(Q2P). We study the time evolution of the cur-
rent density near the X-point of the magnetic field by “lo-
cal analysis” (in [14], Imshennik and Syrovatskii analyzed
the compressible fluid model by local analysis; see also
Biskamp [15] for a local analysis of incompressible MHD).

We consider a local solution of Eqs. (27) and (28),
such as

Q = a(t) + b(t)y, (29)

P = c(t)x + d(t)y. (30)
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Table 1 The Equations of motion and their canonicalized sub-classes.

General non-canonical Canonicalized
systems sub-classes

U = [Q, P]
Euler ∂tU + [Δ−1U,U] = 0 ∂tQ + [Δ−1[Q, P],Q] = 0

∂tP + [Δ−1[Q, P], P] = 0

U = [Q, P], ψ = ψ(Q, P)
RMHD ∂tψ + [Δ−1U, ψ] = 0 ∂tQ + [Δ−1[Q, P],Q] = −(∂Pψ)J

∂tU + [Δ−1U,U] = [ψ,Δψ] ∂tP + [Δ−1[Q, P], P] = (∂Qψ)J
J = Δψ(Q, P)

Table 2 Hamiltonians and Poisson operators for several models.

Hamiltonians Poisson operators

Non-canonical
H(U) = − 1

2

∫
Δ−1U · Ud2x J(U) = − [U, ◦]

Euler Canonical: U = [Q, P]

H(Q, P) = − 1
2

∫
Δ−1[Q, P] · [Q, P]d2x JC =

(
0 I
−I 0

)

Non-canonical

RMHD H(U, ψ) = − 1
2

∫ (
Δ−1U · U + Δψ · ψ

)
d2x J(U, ψ) =

( − [U, ◦] − [
ψ, ◦]

− [
ψ, ◦] 0

)

Canonical: U = [Q, P], ψ = ψ(Q, P)

H(Q, P) = − 1
2

∫ (
Δ−1[Q, P] · [Q, P] + Δψ(Q, P) · ψ(Q, P)

)
d2x JC =

(
0 I
−I 0

)

Then, the physical quantities are given by

ψ = Q2P = (a + by)2(cx + dy), (31)

J = Δψ = Δ(Q2P) = 2b2(cx + dy) + 4bd(a + by),

(32)

U = Δφ = [Q, P] = −bc. (33)

Here we solve Eq. (33) as φ = −(bc/2)y2. In compari-
son with the previous model of [15], the present model
includes a finite magnetic force [ψ, J], which yields an es-
sential difference between RMHD and 2DEV. Substituting
Eqs. (29) and (30) into Eqs. (27) and (28), and comparing
the zero- and first-order terms, we derive the ordinary dif-
ferential equations

ȧ = −4a3bd, (34)

ḃ = −14a2b2d, (35)

ċ = 8a2bcd, (36)

ḋ = 8a2bd2, (37)

where the dot denotes the time derivative. Here we as-
sumed that the term including x is negligibly small in
Eq. (27); this assumption limits the range of x in the lat-
ter calculation. We also assumed that the terms [φ,Q]
and [φ, P] are negligibly small; the former turns out to be

zero, and the latter to be slowly increasing. Integrating
Eqs. (34)–(37), we obtain

a ∝ (t − t0)−2/7, (38)

b ∝ (t − t0)−1, (39)

c ∝ (t − t0)4/7, (40)

d ∝ (t − t0)4/7, (41)

where t0 is a constant. For t0 > 0, a and b blow up as
t → t0.

The finite-time blow-up of these coefficients causes a
singularity in the current density J, which consists of the
terms

4abd ∝ (t − t0)−
2
7−1+ 4

7 = (t − t0)−
5
7 ,

2b2cx ∝ (t − t0)−2+ 4
7 x = (t − t0)−

10
7 x,

6b2dy ∝ (t − t0)−2+ 4
7 y = (t − t0)−

10
7 y.

Now we examine the consistency of the assumptions
made in the above derivation. First, we evaluate the con-
vective terms. Obviously, [φ,Q] = 0, whereas [φ, P] be-
haves as

bc2y ∝ (t − t0)−1+ 8
7 y = (t − t0)

1
7 y.
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Thus, it is smaller than the other exploding terms. The
first-order terms on the right-hand side of Eq. (27) scale as

a2b2cx ∝ (t − t0)−
4
7−2+ 4

7 x = (t − t0)−2x,

a2b2dy ∝ (t − t0)−
4
7−2+ 4

7 y = (t − t0)−2y.

The term including x has the same singularity. To omit this
term, we have to consider a domain such that |x| 
 |y|.

4. Concluding Remarks
In this study, we constructed a series of canoni-

cal Hamiltonian systems that describe self-consistent sub-
classes of RMHD. They have a common symplectic mani-
fold that has a different relationship to the Poisson man-
ifold of the original non-canonical Hamiltonian system
(general RMHD). Omitting the magnetic term in the
Hamiltonian of each system, the systems reduces to 2DEV.
In contrast, the phase space of 2DEV can be extended by
combining a passive variable ψ that is transported by the
same potential φ = Δ−1U (in RMHD, this ψ is not an artifi-
cial passive quantity, but the magnetic flux that influences
the dynamics of U through the magnetic term), i.e.,

∂tU + [φ,U] = 0, (42)

∂tψ + [φ, ψ] = 0, (43)

where φ = Δ−1U. This trivially extended system is non-
canonical. One may assume that P = ψ embeds the sym-
plectic manifold (P,Q) of Eq. (8) into the space (U, ψ) as
(U, ψ) = ([Q, P], P), which is considerably complex. As
shown in Eq. (10), this embedding (or symplectic foliation)
is constrained by

∫
Ud2x = 0.

One may consider several applications of the present
formulation. For example, the conservation of the Casimir
invariants is automatic; so one may formulate a numerical
scheme that guarantees the constancy of the Casimir
invariants. Another interesting application can be made
in the study of a singularity (finite-time blow-up); as shown

in Table 1, we may formulate a series of nonlinear sys-
tems with different degrees of nonlinearity representing the
magnetic force, each of which is a sub-class of the dynam-
ics of the original system with a different strength of the
nonlinear effect. In the present study, we have constructed
a “local solution” that has a singularity. However, in a
finite-sized domain, the global solution may exhibit differ-
ent behaviors. Numerical simulations based on the present
formulation will be reported elsewhere.
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