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Effects in High Intensity Laser Fields
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Based on the noncanonical Lie perturbation theory, we derived a new formula for relativistic ponderomotive
force in a transversely localized laser field, which is accessible to the regime where the conventional formula
described in terms of the local field gradient can hardly be applied. The formula involves new terms represented
by second and third spatial derivatives; therefore, the force depends not only on the local field gradient, but also
on the curvature and its variation. A physical explanation for these terms is given.
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Ponderomotive force, which corresponds to the pres-
sure of electromagnetic fields, is a central concern in a
wide class of nonlinear plasma physics [1]. The force has
been derived by the averaging method and formulated as
being proportional to the local gradient of the field ampli-
tude [2–4]. An example is that associated with high power
lasers in the nonlinear relativistic regime, which are real-
ized by reducing the pulse width and spot size. In such
a regime, particles are ejected easily from the interaction
region by the ponderomotive force, so that designing laser
field patterns is of specifically importance.

A non-Gaussian beam is one of interesting problems.
In terms of the interaction between laser and particle, a
flat top super-Gaussian profile, which significantly weak-
ens the ponderomotive force near the axis, has an advan-
tage in maintaining a long interaction. The concern is then
what determines the particle dynamics in such a case since
the force estimated from the conventional formula, which
is described only in terms of the local field gradient, tends
to be diminished. A residual higher order force associated
with nonlocal field profile is predicted, but there exists no
formal theory to describe it correctly except direct numeri-
cal integration which hardly provides a prospective guide-
line. In order to find the way out of the difficulty, we herein
revisit the ponderomotive force.

The ponderomotive force results from the first order
perturbation of the expansion parameter ε, the ratio be-
tween particle excursion length and scale length of the field
amplitude gradient. In this method, the higher order terms
εn (n ≥ 2), which represent the effects of nonlocal particle
motion not simply expressed by the local field gradient, are
neglected. However, when the local gradient is diminished,
the neglected terms can survive and capture the dynamics.

Based on the above idea, we explore the ponderomo-
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tive theory including the nonlocal effects up to the order of
ε3. Here, as a method of retaining the Hamiltonian struc-
ture up to higher orders, we employ the noncanonical Lie
perturbation method based on the variational principle in
noncanonical phase space coordinates [5–7]. In a previ-
ous study, we applied the method for the first time to de-
rive the ponderomotive force up to the first order of ε and
confirmed that the resultant force is consistent with that
derived by the averaging method [8]. Based on this ap-
proach, the betatron oscillation in a hollow laser field pat-
tern was discussed [9]. In this paper, we extend the anal-
ysis to formulate the higher order nonlocal ponderomotive
force, in which the nonlocal effect is taken into account by
the higher spatial derivatives at the oscillation center.

We consider the linearly polarized laser field given by

a = ax (x) sin η êx, (1)

where a ≡ |q|A/mc2 is the normalized vector potential,
η = ωt− kzz the phase, q and m the charge and rest mass of
the particle, c the speed of light, ω the angular frequency
and kz the wavenumber. In considering the particle motion
in the field Eq. (1) in vacuum, we employ the noncanonical
phase space coordinate given by

zμ = (η; x, y, z, px, py, pη), (2)

where pη ≡ pz − γmc is a constant of motion in a uni-
form laser field and γ is the relativistic factor [9]. In this
coordinate, the covariant vector γμ, by which the varia-
tional principle is written as δ

∫
γμdzμ = 0, is obtained

as γμ =
(
−K; p⊥ + mcσa⊥, pη, 0, 0, 0

)
where the Hamil-

tonian K is given by K = −
(
2kz pη

)−1 (
m2c2 + p2⊥ + p2

η

)
.

Since γμ is independent of the coordinates y and z, the cor-
responding variables py and pη are constants of motion ac-
cording to the Noether’s theorem. The equations of motion
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can be obtained using the variational principle as

dzi

dz0
= Ji j

(
∂γ j

∂z0
− ∂γ0

∂z j

)
, (3)

where Ji j is the Poisson tensor defined as the inverse of the
Lagrange tensor ωi j = ∂iγ j − ∂ jγi. In the uniform laser
field, the figure-eight orbit in the x-z plane are derived [9].

Here, to derive the oscillation center equation of mo-
tion, we further transform the coordinate zμ to that in-
cluding the oscillation center variables, Zμ = (η; X,Y,Z,
Px, Py, pη). The relation between the old and new coordi-
nates is defined as zi = Zi+ z̃(0)i where z̃(0)i is the oscillatory
component of the figure-eight motion in the uniform laser
field. To also express the laser field in terms of the oscil-
lation center variables, we expand ax (x) in Eq. (1) around
x = X as

ax(x) = ax (X)

[
1 + ε

x̃
L
+ ε2 x̃2

2!R
+ ε3 x̃3

3!T
+ · · ·

]
,

(4)

where x̃ ≡ X − x. Here the expansion parameter ε is
defined as l/L ∼ O (ε) where l ≡ ax (X) /kzζ0 is the
figure-eight excursion length in the x direction, and L−1 ≡
∂x ln ax (x) |x=X = a−1

x ∂Xax the scale length of the gradient
of the laser field amplitude. Note that ζ0 is a constant by
which the initial value of pη is defined as pη0 ≡ −mcζ0.
R−1 ≡ a−1

x ∂
2
Xax and T−1 ≡ a−1

x ∂
3
Xax are the curvature of

the field amplitude and its derivative, respectively, assum-
ing l2/R ∼ O

(
ε2

)
and l3/T ∼ O

(
ε3

)
. Note that now all

the derivatives are evaluated at the oscillation center X;
this differs from Ref. [8] and [9], in which the expansion
is taken around a fixed position.

In the perturbation analysis, we consider the Lie trans-
formation Zμ �→ Z′μ which removes higher order oscil-
lations from the 1-form. This requirement is satisfied by
choosing γ′(n)

i = 0 and

γ′(n)
0 =

[
(∂νS(n−1))(n) − (g(n−1) jω jν)(n) +C(n)

ν

]
V (0)ν,

(5)

for n ≥ 1, where S(n) is the gauge function, gμ(n) the Lie
generator, C(n)

μ a vector obtained from the lower order cal-
culations, and V (0)μ the unperturbed flow vector defined
by V (0)0 = 1 and V (0)i(z) = dz(0)i/dz0 [5]. The overline
indicates the average over one cycle of η. Note that the
first and second terms on the right-hand side (RHS) of
Eq. (5) originate from the fact that, in the present analy-
sis, quantities including ax are functions of X owing to the
expansion Eq. (4), so that the X derivative of such quan-
tities of O (εn) may give rise to terms of O

(
εn+1

)
, e.g.

∂XΓ
(n)
j = O (εn)+O

(
εn+1

)
, due to the ordering l/L ∼ O (ε).

The 1-form Γ′μdZ′μ in which the oscillations are re-
moved by the Lie transformation up to ε3 yields to

Γ′(0)
0 = −K +

p′ηkzl2

4
α2 − (1 + α)σP′xl sin η, (6)

Γ′(1)
0 = 0, (7)

Γ′(2)
0 = −ε2 l

16
p′ηkzl

[
A

l2

R
+ B

l2

L2

]

+ ε2 P′2x
p′ηkz

[
1
2

(1 + α)
l2

R
−

(
α +

1
4

)
l2

L2

]
, (8)

Γ′(3)
0 = 0, (9)

where σ ≡ q/|q|, α
(
p′η

)
≡ mcζ0/p′η, A = α4 + 4α3 +

2α2 and B = 7α4/4 + 8α3 + 6α2. The phase space
components are obtained as Γ′i =

(
P′x, P′y, p′η, 0, 0, Γ′6

)
.

Here Γ′6 = kzl2
(
1 − α2

)
sin(2η)/8 appears due to the

gauge transformation Γμ �→ Γμ + ∂μS(0) where S0 =

p′ηkzl2
(
1 + α2

)
sin(2η)/8, which is found to contribute to

removing oscillations from the resultant equation of mo-
tion, the details will be discussed in a separate paper. Note
here that the odd orders of the Hamiltonian, Eqs. (7) and
(9), are zero. Then, one can see that the second and fourth
order forces do not appear, since the nth order Hamilto-
nian leads to a force of the (n+ 1)th order as seen from the
(i, j) = (4, 1) component in Eq. (3). Here, it is worth con-
sidering the general properties of the higher order terms.
Since the ponderomotive force is a pressure force associ-
ated with electromagnetic fields, it does not depend on the
sign of the particle charge σ. Therefore, only the terms
proportional to σ2n (n = 1, 2, · · · ) can be retained in the
secular 1-form, so that only Γ′2n

0 has a finite value, which
produces the ponderomotive force of the order ε2n+1.

The equations of motion are derived from the 1-form
Γ′μdZ′μ obtained above. For i = 2, 5, and 6, dY ′/dη =
−P′y/kz p′η, dP′y/dη = 0 and dp′η/dη = 0 are derived, which
lead to Y ′ = y0, P′y = 0, and p′η = −mcζ0, assuming the
initial condition (X′⊥, P

′
⊥) = (x⊥0, 0) at η = 0. By using

these solutions, in the X′ direction, i.e. i = 1 and 4, we
obtain

dX′

dη
=

P′x
mcζ0kz

(
1 + ε2 3

2
l2

L2

)
, (10)

dP′x
dη
= −mcax

2

[
ε

l
L
+
ε3

8

(
7
2

l
L

l2

R
+

l3

T
+

1
2

l3

L3

)]
.

(11)

Here, an additional term proportional to P′2x (l/L)
(
l2/R

)
appears on the RHS of Eq. (11), however, we neglect it
since P′x is of the order ε, so that the term is O

(
ε5

)
. Note

here that ax, l, L, R, and T are functions of X′. Equa-
tions (10) and (11) determine the transverse secular motion
of the oscillation center up to O

(
ε3

)
. As seen in Eq. (11),

the next order ponderomotive force following the first or-
der is O

(
ε3

)
, which consists of the terms proportional to

second and third spatial derivatives of the field, and also
to the cube of the field gradient. Thus, the force depends
not only on the local field gradient, but also on the field
curvature and its derivative (spatial variation of curvature)
which correspond to higher-order nonlocal structures not
simply described by the local gradient. In the Z′ direction,
the translational motion driven by the light momentum is
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Fig. 1 Effects of the curvature R−1 and third derivative T−1 of the
field amplitude on the particle orbit. The field has (a) a
curvature, (b) gradient and curvature, and (c) a curvature
transition at X = X0. Black and blue lines represent the
particle orbit in the x-z plane and the field pattern, respec-
tively. The unperturbed orbits are shown for comparison
below each figure.

also found to be affected by the higher order terms through
the u × B force, which will be shown in a separate paper.

The role of the nonlocal effects can be explained us-
ing Fig. 1 which represents three typical laser field pat-
terns, i.e., (a) a symmetrical concave (solid line) or convex
(dashed line) structure, i.e. l/L = l3/T = 0 but l2/R � 0
at X = X0, (b) an asymmetric concave (solid line) or con-
vex (dashed line) structure where l/L � 0, l2/R � 0 but
l3/T = 0, and (c) an asymmetric structure with curva-
ture transition at X = X0 where l/L = l2/R = 0 while
l3/T � 0. The corresponding particle orbits around X = X0

are shown in Fig. 1 (black solid lines) for l2/R > 0 and
l3/T > 0. In case (a), the excursion length increases (de-
creases) when the curvature is positive (negative) due to the
increase (decrease) in the cycle-averaged field amplitude.
However, since the change is symmetric for X = X0, the
nonlocal effect is cancelled during one cycle of η. There-
fore, case (a) does not produce ponderomotive force. This
is the reason why the term l2/R ∼ O

(
ε2

)
does not appear

independently in Eq. (11). On the other hand, in case (b),
the symmetry associated with the curvature l2/R is broken
due to the coupling with the gradient. Consequently, an
asymmetry is produced in the orbit, which leads to a pon-
deromotive force influenced by the curvature. In case (c),

the orbit also becomes asymmetric but in a different man-
ner. Namely, although the field gradient is zero at the
oscillation center, the nonlocal effect associated with the
third derivative yields ponderomotive force. The general
parity relation that all the even derivatives, i.e. ∂nax/∂Xn

(n = 2, 4, 6, · · · ), do not appear alone in the equation of
motion has been confirmed in orders higher than ε3.

In conclusion, based on the noncanonical Lie pertur-
bation method, we derived a new formula for relativistic
ponderomotive force, which depends not only on the local
field gradient, but also on the curvature and its variation
representing the effect of higher order nonlocal particle
motion. The formula is then applicable to the regime where
laser fields exhibit characteristic transverse structures such
that higher derivatives of the field amplitude regulate the
interaction. The formula can provide a theoretical basis
not only for understanding the interaction in complicated
laser field patterns, but also for designing laser fields by
controlling the interaction using nonlocal characteristics of
relativistic ponderomotive force. In our next study, we will
apply the formula derived here to a specific problem such
as a flat-top laser beam.
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