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Effects of a static magnetic island generated by an external magnetic field on the linear stability and the
nonlinear dynamics of resistive interchange modes are numerically studied by means of the reduced magnetohy-
drodynamic (MHD) equations in a straight heliotron configuration. Equilibria consistent with the static magnetic
island are examined, where the pressure profile is locally flat inside the separatrix. The linear growth rate of the
interchange mode is decreased with the increase of the static island width. The mode is completely stabilized
when the static island width exceeds a threshold value. The threshold width is almost the same as the half-width
of the eigenfunction of the stream function obtained for the equilibrium without the static island. The saturation
level of the kinetic energy in the nonlinear evolution is also decreased with the increase of the static island width.
The island width and the pressure profile are also affected by the nonlinear saturation of the interchange mode.
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1. Introduction
Resonant magnetic perturbations (RMPs) are now fo-

cused on the collapse control in the magnetic confinement
of the fusion plasmas. The reduction of the pressure gradi-
ent due to the imposition of the RMPs is considered to have
a potential to stabilize pressure driven modes. The confir-
mation of such stabilization effects is extensively carried
out in many experiments. In tokamaks, the control of the
edge localized modes with the RMPs has been widely ex-
amined for the purpose of the application to ITER [1]. Also
in heliotrons, the stabilizing effects of the RMPs on the in-
terchange modes are examined. Yamada et al. [2] studied
the effects of the (m, n) = (1, 1) RMP to the plasma in
the Large Helical Device (LHD) [3], where m and n are
the poloidal and the toroidal mode numbers, respectively.
They observed that the fluctuation amplitude is reduced as
the amplitude of the RMP increases and the fluctuation is
completely suppressed when a sufficiently large RMP is
imposed.

On the other hand, in the heliotron configurations, the
interaction between the islands induced by the RMP and
the interchange mode has also been studied with numeri-
cal calculations. Unemura et al. [4] analyzed the nonlinear
evolution of the mode with static islands and obtained a
pressure collapse. Garcia et al. [5, 6] studied the behavior
of the magnetic islands including a diamagnetic effect and
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showed an island oscillation due to the diamagnetic flow.
Saito et al. [7,8] examined the change of the width and the
phase of the islands in the nonlinear evolution of the inter-
change modes and found that the island width is enlarged
by the mode. Nishimura et al. also studied the interac-
tion between the RMPs and the plasma flow in tokamaks
and heliotrons [9–11]. All these studies treated equilibrium
pressure profiles corresponding to nested flux surfaces and
incorporated the RMPs by imposing a constant perturbed
poloidal magnetic flux at the plasma boundary. In gen-
eral, however, the equilibrium pressure profile is locally
deformed by the existence of the static magnetic island.
Therefore, the equilibrium pressure in the previous stud-
ies was not consistent with the geometry of the magnetic
islands. Furthermore, the contribution of the local defor-
mation of the pressure profile due to the existence of the
islands to the behavior of the interchange modes was not
taken into account. No systematic stability study of the
interchange mode has been performed for equilibria with
pressure profile consistent with the static magnetic islands.

Thus, in the present work, we analyze numerically the
behavior of the interchange mode in the equilibria consis-
tent with the island structure. To understand the funda-
mental physics, we investigate the interaction between the
mode and the static island with the same mode numbers,
(m, n) = (1, 1) in a straight heliotron configuration. We
utilize the reduced MHD equations [12] because the equa-
tions are useful for the analysis of such low mode num-
ber physics. As mentioned above, the equilibria consis-
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tent with the static island are necessary for this analysis.
To obtain such equilibria, we have developed the FLEC
code [13, 14]. This code gives equilibrium solutions corre-
sponding to the reduced MHD equations for a given finite
RMP, of which the resultant pressure profile is locally flat
inside the separatrix.

By using the code, we can obtain two kinds of the
equilibrium solutions with local flat pressure profile inside
the separatrix [13, 14]. The difference of the solutions de-
pends on the continuity of the pressure gradient at the sep-
aratrix except the X-point. When the pressure gradient at
the separatrix is required to be continuous, the equilibrium
pressure gradient has to be zero at the X-point. On the
other hand, when the pressure gradient at the separatrix
is allowed to be discontinuous, the equilibrium pressure
gradient can be finite at the X-point. In the former case,
the region with the flat pressure profile is almost annular.
Ichiguchi et al. [15, 16] already studied the stability con-
tribution of such annular flat structure on the interchange
mode and found that the structure stabilizes the mode ef-
fectively. Therefore, we examine the stability of the lat-
ter equilibrium with a finite gradient at the X-point to ob-
tain the stabilizing effect of the static island in this paper.
In the stability analysis, the NORM code [17] is utilized,
which solves the reduced MHD equations. Since the origi-
nal NORM code was developed only for the analysis of the
equilibria with nested flux surfaces, we modify the code so
as to treat the equilibrium with static islands. We follow
the time evolution of the perturbation to obtain the linear
growth rate and the nonlinear saturation level of the inter-
change mode. We also examine the changes in the width
and the phase of the island and the pressure profile in the
nonlinear evolution of the mode.

This paper is organized as follows. In Sec. 2, the
reduced MHD equations used in the present study are
explained. In Sec. 3, the equilibria consistent with the
(m, n) = (1, 1) static island calculated with the FLEC code
are shown. The linear stability of the equilibria is also
discussed. In Sec. 4, the nonlinear evolution of the inter-
change mode is considered. The saturation level of the ki-
netic energy and the behavior of the magnetic island and
the pressure profile are discussed. Conclusions are given
in Sec. 5.

2. Basic Equations
The effect of the static island with the mode numbers

of (m, n) = (1, 1) on the interchange mode with the same
mode number is investigated in the present study. The
reduced MHD equations [12] are utilized for the analysis
in the cylindrical coordinates (r, θ, z), which are solved by
the NORM code [17]. The equations are composed of the
Ohm’s law, the vorticity equation and the pressure equation
for the poloidal fluxΨ (r, θ, z), the stream functionΦ(r, θ, z)
and the plasma pressure P(r, θ, z). The normalized equa-
tions are given by

∂Ψ̃

∂t
= −Beq · ∇Φ̃ − B̃ · ∇Φ̃ + 1

S
J̃z, (1)

dŨ
dt
= −Beq · ∇J̃z − B̃ · ∇(Jzeq + J̃z)

+
1

2ε2
∇Ω × ∇P̃ · z + ν∇2

⊥Ũ, (2)

and

∂P̃
∂t
= z × ∇Φ̃ · ∇(Peq + P̃) + κ⊥∇2

⊥P̃

+κ‖{(Beq ·∇)(Beq ·∇)P̃+(Beq ·∇)(B̃·∇)(Peq+P̃)

+(B̃ · ∇)(Beq · ∇)P̃+(B̃ · ∇)(B̃ · ∇)(Peq + P̃)}. (3)

Here, ‘eq’ and ‘∼’ refer the equilibrium and the perturbed
quantities, respectively. The magnetic field is written as

B = Beq + B̃, (4)

where Beq and B̃ defined as

Beq = z + z × ∇Ψeq and B̃ = z × ∇Ψ̃ , (5)

respectively. Here, z denotes the unit vector in the z direc-
tion.

In the equilibrium including static islands, equilibrium
quantities have the dependence of not only r but also θ and
z. We express the equilibrium quantity Qeq with the sum of
the symmetric and the island parts, which are referred by
the subscripts of ‘sym’ and ‘J’, respectively, as follows:

Qeq(r, θ, z) = Qsym(r) + QJ(r, θ, z). (6)

The island part QJ is expanded into the Fourier series as

QJ(r, θ, z) =
Neq∑

n=0,m=n

Q̂J m,n(r) cos(mθ − nz), (7)

where ‘∧’ means the Fourier coefficients and Neq denotes
the highest mode number in the equilibrium expansion.
Since we treat the static island with a single mode of
(m, n) = (1, 1), only the components with n/m = 1 are
picked up in Eq. (7). In the equilibrium poloidal flux, the
boundary condition corresponding to the (m, n) = (1, 1)
static magnetic islands,

Ψ̂J 1,1(r = 1) = Ψb, (8)

is imposed as in Refs. [4–6]. Here, Ψb is the external
poloidal flux at r = 1.

The current density in the z direction Jz is expressed
as

Jz = Jzeq + J̃z, (9)

where Jzeq and J̃z are defined as

Jzeq = ∇2
⊥ΨJ and J̃z = ∇2

⊥Ψ̃ , (10)

respectively. The operator ∇2⊥ is given by
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∇2
⊥ =

1
r
∂

∂r
r
∂

∂r
+

1
r2

∂2

∂θ2
. (11)

The vorticity in the negative z direction Ũ(r, θ, z) is defined
as

Ũ = ∇2
⊥Φ̃. (12)

The time derivative is given by

d
dt
=
∂

∂t
+ ∇Φ × z · ∇. (13)

The rotational transform´ι is defined as

´ι(r) =´ιsym(r) +´ιJ(r), (14)

where

´ιsym(r) =
1
r

dΨsym(r)

dr
and ´ιJ(r) =

1
r

dΨ̂J 0,0(r)
dr

.

(15)

In stellarators, the currents in the helical coils generate he-
lical field lines. Since we assume a straight heliotron con-
figuration, the averaged curvature of the field lines ∇Ω is
given by

dΩ
dr
=

Ntε
2

l
1
r2

d
dr

(r4

´ιsym). (16)

Here, Nt, l and ε are the toroidal period number, the pole
number and the aspect ratio, respectively. In the case of
positive shear of´ιsym, dΩ/dr is positive. The positive
dΩ/dr implies the bad curvature and drives an interchange
mode combined with negative dp/dr. Note that this com-
ponent given by Eq. (16) does not appear in tokamaks with-
out helical coils. The factors S , ν, κ⊥ and κ‖ are the mag-
netic Reynolds number, the viscosity coefficient, the per-
pendicular and the parallel heat diffusion coefficients, re-
spectively.

We assume that the perturbed quantities also have a
single helicity with n/m = 1/1. Under the assumption,
we expand the perturbed quantities in the Fourier series as
follows :

Ψ̃ (r, θ, z) =
Npe∑

n=0,m=n

Ψ̃m,n,

Ψ̃m,n = Ψ̂m,n(r) cos(mθ − nz), (17)

Φ̃(r, θ, z) =
Npe∑

n=0,m=n

Φ̃m,n,

Φ̃m,n = Φ̂m,n(r) sin(mθ − nz), (18)

P̃(r, θ, z) =
Npe∑

n=0,m=n

P̃m,n,

P̃m,n = P̂m,n(r) cos(mθ − nz). (19)

Here, Npe is the highest mode number for the perturbations.
The growth rate is given by

γ =
1
2

1
EK

dEK

dt
, (20)

where the kinetic energy EK is defined as

EK =

N∑
n=0,m=n

Em,n
K , Em,n

K =
1
2

∫
|∇Φ̃m,n × z|2dV.

(21)

Here,
∫

dV denotes the integral over the plasma volume.

3. Island Effect on Linear Stability
The MHD equilibria including the static magnetic is-

land with the mode numbers of (m, n) = (1, 1) in a straight
heliotron configuration are calculated with the FLEC code
[13]. The magnetic configuration parameters of Nt = 10,
l = 2 and ε = 0.16 are employed in the calculation, which
correspond to the LHD configuration. A monotonously in-
creasing rotational transform with´ι(0) = 0.4 and´ι(1) = 1.8
is also employed. Figure 1 shows the magnetic surfaces
and the pressure contour of an example of the equilibria
including the static island. The equilibrium corresponds
to wi = +7.9 × 10−2 or Ψb = +5.0 × 10−4, where wi is
the equilibrium island width normalized by the plasma ra-
dius. The magnetic surfaces are plotted by tracing the field
lines as explained in Ref. [14]. Figure 2 shows the equilib-
rium pressure profile along the line connecting the points
of (r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) and
the bird’s eye view of the profile for wi = +7.9 × 10−2

(Ψb = +5.0 × 10−4). The central beta value of 1.5% and
the profile of Psym = P0(1 − r4) are assumed in this case.
The pressure profile is locally flat inside the separatrix,
while the gradient is finite at the X-point and the same
as that of Psym. The equilibrium island width varies from
−10.4 × 10−2 to +10.4 × 10−2 for the change of the bound-
ary poloidal flux from Ψb = −1.0 × 10−3 to +1.0 × 10−3,
as shown in Fig. 3. It is noted that positive and negative
values correspond to the islands with the O-point located
at θ = π and θ = 0, respectively, in this figure.

The NORM code solves the reduced MHD equations
as an initial value problem. For each initial component of
the perturbations, X̂m,n = (Ψ̂m,n, Φ̂m,n, P̂m,n), we employ the
form of

X̂m,n = σ f (r), (22)

where σ denotes the sign which takes the value of +1 or
−1 and f (r) is a function with a small absolute value corre-
sponding to a white noise. In this study, we utilize the form
of f (r) = 10−18{1−4(r−1/2)2}2. The validity of the choice
of the initial condition is confirmed by the appearance of
the sufficiently long linear phase and the behavior of the
nonlinear coupling in Fig. 4. The dissipation parameters of
S = 104, ν = 8.5 × 10−6, κ⊥ = 2.0 × 10−5 and κ‖ = 2.0
are used. This choice of these parameters guarantees the
(m, n) = (1, 1) component is dominant in the time evolu-
tion of the mode as discussed later. As the highest Fourier
mode numbers, Neq = 15 and Npe = 30 are employed.
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Fig. 1 (a) Magnetic surfaces and (b) contour of constant pres-
sure of the equilibrium including a static island with the
mode number of (m, n) = (1, 1) for wi = +7.9 × 10−2

(Ψb = +5.0 × 10−4). Blue lines show the separatrix of the
island.

We discuss the effect of the equilibrium island on the
linear stability firstly. Figure 4 shows time evolutions of
the kinetic energy for the equilibria without the island cor-
responding to wi = 0 (Ψb = 0) and σ = +1 and with the is-
land corresponding to wi = +2.8×10−2 (Ψb = +5.0×10−5)
and σ = +1. The linear phase appears in the whole range
ofΨb = −1.0×10−3 to +1.0×10−3, where the (m, n) = (1, 1)
component is dominant. The relation of the linear growth
rates among the components is different between the cases
with wi = 0 and wi � 0. The growth rate of En,n

K increases
as the mode number becomes large in the case of wi = 0,
while the growth rate of each mode number is almost the
same in the case of wi � 0. As is explained in Ref. [7],
this feature for wi � 0 is attributed to the fact that the
(m, n) = (1, 1) component is dominant and the relation of
|Ψ̂J 1,1| � |Ψ̂1,1| is satisfied in the linear phase.

Figure 5 shows the dependence of the growth rate

Fig. 2 (a) Equilibrium pressure profile for wi = +7.9 × 10−2

(Ψb = +5.0 × 10−4) and β0 = 1.5%. Blue and dashed
lines indicate the positions of the separatrix of the island
at θ = π and the positions of the rational surface, respec-
tively. (b) Bird’s eye view of the pressure profile.

γ on wi. The growth rate γ is decreased as wi is in-
creased, and the interchange mode is completely stabi-
lized when wi exceeds a threshold value. The threshold
island width for the marginal stability is |wi| = 5.7 × 10−2

(|Ψb| = 2.3 × 10−4) in the present case. In the decrease of
the growth rate, the mode structure of the stream function
Φ̂1,1 hardly changes as shown in Fig. 6. The half-width of
the mode wH is 6.5×10−2 for wi = 0 (Ψb = 0) and 6.6×10−2

for wi = +4.6 × 10−2 (Ψb = +1.5 × 10−4). Therefore, the
threshold island width is 0.88 of wH of the stream function
for wi = 0 (Ψb = 0). When σ is changed, the sign of the
eigenfunctions becomes opposite while the growth rate is
the same. This linear stability dependence on wi implies
that the static magnetic islands have a stabilizing contri-
bution to the interchange mode. The driving force of the
interchange mode is reduced by the local flattening of the
pressure profile at the resonant surface, because the mode
is driven by the pressure gradient and the field line curva-
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Fig. 3 Dependence of island width on Ψb. Positive and nega-
tive values correspond to the island with the O-point at
θ = π and θ = 0, respectively. Blue circles and squares
show wi and the threshold width for the marginal stabil-
ity, respectively. Red circles and green triangles show the
island width in the saturation of interchange modes, ws,
for σ = +1 and σ = −1, respectively.

Fig. 4 Time evolution of the kinetic energy for (a) wi = 0 (Ψb =

0) andσ = +1 and (b) wi = +2.8×10−2 (Ψb = +5.0×10−5)
and σ = +1.

Fig. 5 Dependence of the growth rate of the interchange mode
in the linear phase on wi.

Fig. 6 Normalized Φ̂1,1 for wi = 0 (Ψb = 0) and wi = +4.6×10−2

(Ψb = +1.5× 10−4). Dashed line indicates the position of
the rational surface. Vertical black solid lines indicate the
positions corresponding to the half value of the normal-
ized Φ̂1,1 for Ψb = 0.

ture. It is already obtained for the case of the annular struc-
ture of the flat region that the growth rate is reduced with
the increase of the width of the flat region. A quarter of
the half-width of the stream function obtained without the
flat region is needed for the complete stabilization in this
annular case [16]. In the present analysis, the flat width in
the pressure profile is not constant in the poloidal direction.
The width is maximum at the O-point, while the original
finite pressure gradient remains at the X-point as shown in
Fig. 2. Even in this case, the pressure flattening in the sepa-
ratrix stabilizes the interchange mode. Comparing with the
annularly flat case, the threshold width in the static island
case is larger than that in the annularly flat case. This is
due to the fact that the stabilizing effect of the static island
is weakened by the decrease of the flat width from the O-
point to the X-point and the existence of the finite gradient
X-point.
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4. Nonlinear Interaction between
Static Magnetic Islands and Resis-
tive Interchange Modes

As shown in Fig. 4, a steady state appears after the
linear phase in the time evolution of the interchange mode
when the mode is unstable. Thus, we discuss the behav-
ior of the interchange mode and the changes of the is-
land width and the pressure profile in the nonlinear steady
state. The steady state is identified with the condition of
|γ| < 10−5. Figure 7 (a) shows the dependence of the to-
tal kinetic energy EK in the steady state on wi. As wi is
increased, EK is decreased. This dependence is similar to
that of the linear growth rate shown in Fig. 5. That is, the
slow growth of the mode leads to a low saturation level.
Figure 7 (b) shows the profile of Φ̂1,1 in the steady state.
As wi is increased, the absolute value of Φ̂1,1 is decreased,
while the half-width is almost constant for wi. Therefore,
the decrease of EK in the steady state is attributed to the de-
crease of the absolute value of Φ̂1,1. This tendency seems
to be consistent with the experiment [2] that the fluctuation
amplitude is decreased with the increase of the RMP.

Fig. 7 (a) Dependence of the kinetic energy on wi, and (b) pro-
files of Φ̂1,1 in the steady state. Vertical black solid lines
indicate the positions corresponding to the half value of
Φ̂1,1 in the steady state for wi = 0.

We analyze the behavior of the island due to the non-
linear evolution of the interchange mode. Before the dis-
cussion for the case of the finite wi, we examine the change
of the magnetic island in the case of wi = 0 (Ψb = 0) as
a reference. Figure 8 (a) shows the magnetic surfaces for
wi = 0 (Ψb = 0) and σ = +1 at t = 10000τA. Since
we employ a large resistivity of S = 104 in the present
analysis, the interchange mode generates a magnetic island
with a substantial width even in the case of wi = 0. In the
present choice of the dissipation parameters, there are two
O-points at θ = 0 and θ = π, which are shown by the green
and the blue lines, respectively. That is, the separatrix is
composed of the mixed islands of the m = 1 and the m = 2
components. However, the island width with the O-point
located at θ = π is +5.2×10−2 and the other is −5.8×10−3.
Therefore, the island with the O-point located at θ = π is
much larger than that with the O-point located at θ = 0.
This means that the m = 1 island is dominant. Thus, we
neglect the smaller island and regard the separatrix as the
m = 1 island. And hereafter, we refer the O-point of the

Fig. 8 (a) Magnetic surfaces and (b) flow pattern at t = 10000τA

for wi = 0 (Ψb = 0) and σ = +1.
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smaller island as the X-point of the larger island. The flow
pattern of the vortex calculated from Φ̃ at t = 10000τA is
also plotted in Fig. 8 (b). This flow shows a typical pattern
of an m = 1 interchange mode. The influence of the m = 2
component to the flow is too small to be recognized. Thus,
the flow pattern also validates the neglect of the m = 2
component. There exist the outward and the inward radial
flows at the X-point of θ = 0 and the O-point of θ = π,
respectively. The directions of the flow is consistent with
the reconnection at the X-point. In the case of σ = −1, the
phase of the magnetic surfaces and the flow are opposite to
those of σ = +1.

Next, we discuss the case of wi � 0 (Ψb � 0). The
magnetic surfaces at t = 0 and t = 14000τA are shown in
Figs. 9 and 10. The separatrix is composed of the mixed
islands of the m = 1 and the m = 2 components in the
magnetic surfaces at t = 14000 in both cases as in the
case of wi = 0. We also neglect the m = 2 component
and regard the separatrix as the m = 1 island. In the case
of wi = +2.8 × 10−2 (Ψb = +5.0 × 10−5) and σ = +1,
the island width is increased by the nonlinear evolution of
the interchange mode as shown in Fig. 9. In the case of
wi = +2.8 × 10−2 (Ψb = +5.0 × 10−5) and σ = −1, the
island phase is changed by the interchange mode as shown
in Fig. 10.

The island width in the steady state, ws, is summa-
rized in Fig. 3. Red circles and green triangles show the
width for σ = +1 and σ = −1, respectively. Blue
squares show the threshold width for the marginal stability
(wi = +5.7 × 10−2). The island width changes only in the
region of |wi| ≤ 5.7 × 10−2, because the interchange mode
is stable outside the region. In the region |wi| < 5.7 × 10−2,
there are two cases in the island change depending on σ.
One is the increase of the island width and the other is
the decrease of the width as in the study of Ref. [7]. In
the latter case, the island phase can also be changed. Fig-
ures 9 and 10 are the examples of the former and the latter
changes, respectively. These changes are attributed to the
fact that the island width in the steady state is determined
by the superposition of the island generated by the non-
linear evolution of the interchange mode and the equilib-
rium magnetic island. The island width is increased if the
phase of the equilibrium island is the same as that of the
island generated by the interchange mode, and decreased
if opposite. The phase of the island generated by the in-
terchange mode depends on σ. Therefore, the two kinds of
change in the island width occur depending on σ. The flow
patterns of the two cases are also plotted in Fig. 9 (c) and
Fig. 10 (c). The island width increases when the flow di-
rection is radially outward at the X-point of the equilibrium
island. The island width decreases and the island phase can
change when the flow direction is radially inward at the X-
point. The radially outward shift of the plasma compresses
the magnetic surfaces, which enhances the reconnection of
the field lines. Therefore, the radial direction of the flow is
consistent with the driven reconnection of the field lines.

Fig. 9 Magnetic surfaces at (a) t = 0 and (b) t = 14000τA and
(c) flow pattern at t = 14000τA for wi = +2.8 × 10−2

(Ψb = +5.0 × 10−5) and σ = +1.

The nonlinear saturation of the interchange mode also
deforms the pressure profile. Figure 11 shows the pressure
profiles along the line connecting the points of (r = 1, θ =
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Fig. 10 Magnetic surfaces at (a) t = 0 and (b) t = 14000τA and
(c) flow pattern at t = 14000τA for wi = +2.8 × 10−2

(Ψb = +5.0 × 10−5) and σ = −1.

0, z = 0) and (r = 1, θ = π, z = 0) at t = 0 and t = 10000τA

for wi = 0 (Ψb = 0) and σ = ±1. The m = 1 deformation
due to the interchange mode around the resonant surface

Fig. 11 Profiles of pressure (a) along the line connecting (r =
1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) and the
enlargements at (b) θ = 0 and (c) θ = π for wi = 0
(Ψb = 0) and σ = ±1. Black solid lines show the equi-
librium pressure profile. Red and green solid lines show
the pressure profiles in the steady state (t = 10000τA)
for σ = +1 and σ = −1, respectively. Vertical dashed
lines indicate the positions of the rational surface.

with´ι = 1 is seen. This deformation is generated by the
convection of the radial flow. The flow direction is radi-
ally outward at θ = 0 and inward at θ = π for σ = +1
as shown in Fig. 8. Therefore, the plasma with the higher
pressure at the inside of the rational surface is convected to
the outside of the surface at θ = 0, and the plasma with the
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Fig. 12 Profiles of pressure (a) along the line connecting (r =
1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) and the enlarge-
ments at (b) θ = 0 and (c) θ = π for wi = +2.8 × 10−2

(Ψb = +5.0 × 10−5) and σ = ±1. Black solid lines
show the equilibrium pressure profile. Red and green
solid lines show the pressure profiles in the steady state
(t = 14000τA) for σ = +1 and σ = −1, respectively.
Vertical dashed lines indicate the positions of the ratio-
nal surface.

lower pressure at the outside of the surface is convected to
the inside of the surface at θ = π. As a result, the pres-
sure is increased at the X-point of the generated island and
decreased at the O-point. This mechanism is the same for
σ = −1.

This mechanism is also the same in the finite wi case.

Figure 12 shows the pressure profiles for wi = +2.8 × 10−2

(Ψb = +5.0×10−5) andσ = ±1. The change of the pressure
is due to the convection of the radial flow as in the case of
wi = 0. It is remarkable that the local flat structure at the
O-point of the equilibrium island or at θ = π remains even
in the saturation phase in either value of σ. Particularly,
in the case of σ = −1, the pressure is increased at θ = π
with the local flat structure kept in spite of the fact that the
point is changed to the X-point from the O-point as shown
in Fig. 10. Therefore, the nonlinear saturation of the inter-
change mode does not reproduce a new equilibrium with
a pressure profile corresponding to the resultant magnetic
islands.

5. Conclusions
The effects of the (m, n) = (1, 1) static magnetic is-

land on the resistive interchange mode with the same mode
number are studied. For this purpose, we utilize equilibria
with the pressure profile consistent with the island geome-
try of which the gradient at the X-point is finite. The lin-
ear growth rate of the interchange mode is reduced by the
equilibrium island in spite of the finite pressure gradient at
the X-point. Beyond a threshold island width, the mode is
completely stabilized. The threshold width is almost the
same as the half-width of the stream function obtained for
the equilibrium without the island. The effect of the static
island on the interchange mode can be observed in RMP
experiments by detecting both the width of the flat region
in the pressure profile data and the fluctuation amplitude
resonant at the surface of the island. The stabilizing ten-
dency and the existence of the threshold width obtained
in the present analysis is consistent with the experimental
results in LHD [2]. More quantitative comparison will be
planed in future.

In the nonlinear saturation phase of the unstable in-
terchange mode, the saturation level of the kinetic energy
is also decreased as the island width is increased. On the
other hand, the nonlinear evolution changes the shape of
the magnetic island. If the phase of the equilibrium island
is the same as that of the island generated by the inter-
change mode, the island width is increased. If the phase is
opposite, the island width is decreased and the phase can
also be changed. In the point of the relation with the flow
generated by the mode, the island width increases when
the flow direction is radially outward at the X-point of the
initial static island and decreases when the flow direction is
radially inward at the X-point. The interchange mode also
changes the pressure profile through the convection. The
tendency of the profile change is almost independent of the
equilibrium island structure. The pressure is increased and
decreased by the outward and the inward flows, respec-
tively. The local flat structure at the O-point of the static
island is almost kept even if this point is changed to the
X-point.

One of the future works is the incorporation of the uni-
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form poloidal flow such as a diamagnetic flow. If the effect
is included, the interchange modes are possible to rotate.
Then, the static island with a substantial width may lock
the mode rotation. Such mode locking was discussed in
Ref. [9] with a smooth equilibrium pressure profile. By
utilizing the local flat equilibrium pressure consistent with
the island structure, the mode locking due to the static is-
land can be investigated more consistently.

Another future work is the change of the Fourier mode
of the perturbation. In the present analysis, we focus on the
interaction between the static island and the interchange
mode with the same mode numbers, (m, n) = (1, 1). For
this purpose, we adjust the dissipation parameters so that
the (1, 1) component of the interchange mode should be
dominant. By choosing appropriate dissipation parame-
ters, we can set the dominant mode numbers to higher
numbers, such as (2, 2), (3, 3) and so on. It is interesting
to analyze the change of the (1, 1) island structure due to
the dynamics flow with such high mode numbers. On the
other hand, the interaction between the islands with higher
mode numbers of (2, 2), (3, 3) and so on and the (1, 1) in-
terchange mode is considered as another research aspect.
Also in this case, the islands make the equilibrium pres-
sure profile locally flat. Therefore, it is expected that the
islands essentially have a stabilizing contribution to the in-
terchange mode as well. However, further calculations are
needed to obtain the quantitative stabilizing property.

Including the multi-helicity perturbation should also
be considered. Local flattening of the pressure profile
makes the pressure gradient steeper in the region just out-
side the separatrix. Therefore, the interchange mode reso-
nant at the region can be destabilized. Since such a mode
has a helicity different from that of the static island, the
multi-helicity perturbations are needed to analyze the ef-
fect of the static island on the interchange stability in the
whole plasma.
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