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Low beta MHD equilibria including static magnetic islands generated by an external field are studied by
using a two-step approach. The equilibria correspond to the reduced MHD equations in a straight heliotron
configuration. In the first step, a diffusion equation parallel to the field line is solved with the magnetic field fixed
for a solution of the pressure constant along field lines. In the second step, the equilibrium equation corresponding
to the vorticity equation is solved with the pressure fixed for a solution of the poloidal magnetic flux. The two
steps are iterated until the width of the island is converged. The equilibrium pressure profile as a result of the
method is locally flat at both the O-point and the X-point of the magnetic island. Effects of a pressure diffusion
perpendicular to the field are also studied. In this case, an equilibrium pressure of which the profile is flat at the
O-point and steep at the X-point is obtained.
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1. Introduction
In magnetic configurations of heliotron devices such

as the Large Helical Device (LHD) [1], a magnetic hill usu-
ally exists in the plasma confinement region. Therefore,
resistive interchange modes driven by pressure gradients
are easily destabilized in the heliotron devices. Since the
interchange modes can cause a collapse of the plasma, the
stability control is crucial for a good confinement at high
beta.

On the other hand, nested magnetic surfaces are also
desirable for the good confinement. However, error mag-
netic fields originated from coil misalignment and the ter-
restrial magnetism induce static magnetic islands. Such
magnetic islands have a possibility to degrade plasma con-
finement. On the other hand, magnetic islands are also
generated by the nonlinear saturation of the interchange
modes [2, 3]. Therefore, the static magnetic islands have a
potential to affect the stability of interchange modes, that
is, the magnetic islands and the interchange modes can in-
teract with each other.

In our original work [4, 5], the interaction between
static magnetic islands and interchange modes with the
same mode number in the cylindrical geometry is numer-
ically studied. Especially, we focus on a magnetic island
with the mode number of (m, n) = (1, 1), where m and n
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are the poloidal and toroidal mode numbers, respectively.
The reduced MHD equations [6] are utilized for the anal-
ysis because it is useful for the analysis of such low mode
number interaction. A straight heliotron configuration with
a magnetic hill is examined for the investigation of the ba-
sic mechanism. A pressure profile corresponding to the
nested magnetic surfaces is used for the equilibrium pres-
sure. In this case, the interchange modes grow as in the
case without the static magnetic island. The width of the
magnetic island is changed by the nonlinear saturation of
the interchange mode. The situation of the increase or de-
crease of the width depends on whether the diffusion of the
equilibrium pressure in the direction parallel to the mag-
netic field is taken into account or not. In the case without
the parallel diffusion of the equilibrium pressure, there ex-
ist two solutions corresponding to the increase and the de-
crease of the island width [4]. In the case with the parallel
diffusion of the equilibrium pressure, there exists only one
solution corresponding to the increase of the width [5].

The growth of the interchange modes in the above
studies is attributed to the fact that the pressure profile
corresponding to nested surfaces is employed as the equi-
librium pressure. The pressure profile has finite gradient
inside the separatrix, which makes the interchange mode
grow. Other works [7–9], which treated the static islands
and the interchange modes, also employed pressure pro-
files corresponding to the nested surfaces as the equilib-
rium pressure. This kind of profile does not correspond to
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the magnetic surfaces with the magnetic islands. There-
fore, the effect of the magnetic islands on the equilibrium
pressure profiles is not included. Generally, the equilib-
rium pressure is considered to be changed due to the exis-
tence of the magnetic islands. Therefore, the equilibrium
pressure profile including magnetic islands has possibil-
ity to affect the stability of the interchange modes. Fi-
nal goal of our research is to study how the static islands
changes the stability. For this study, an equilibrium with
the pressure consistent with static magnetic islands is re-
quired. Thus, in this work, we develop a numerical code to
obtain MHD equilibria consistent with the static magnetic
island with the mode numbers of (m, n) = (1, 1), which
correspond to the reduced MHD equations in a straight he-
liotron configuration.

The development of numerical codes to solve an equi-
librium including magnetic islands has a long history. The
pioneering work is the code developed by Chodura and
Schlüter [10]. In this code, an equilibrium is obtained by
minimizing the potential energy with a friction method
on cylindrical coordinates based on the variational prin-
ciple. Hender et al. developed the NEAR code by im-
proving the Chodura-Schlüter code with the employment
of vacuum flux surfaces for the reference coordinates [11].
Recently, the PIES code [12] and the HINT code [13, 14]
or the HINT2 code [15] have been developed and widely
used for the stellarator equilibrium studies. Both codes are
based on an iteration scheme of two steps. In the first step,
the pressure profile consistent with the magnetic geometry
with the magnetic field fixed. In the second step, the mag-
netic field satisfying the force balance equation is obtained
with the pressure fixed. In the present work, we basically
employ the two-step scheme.

The treatment in each step is different between the
PIES and the HINT codes. In the first step of the PIES
code, the pressure satisfying the equation of B · ∇P = 0 for
a given magnetic field B is obtained with the field line trac-
ing. In the second step, the plasma current is calculated by
using this pressure P and the field is obtained by solving
the Ampére’s law directly. Then, quasi magnetic coordi-
nates are constructed with the field, and the next iteration
is operated on the coordinates. The HINT code is based
on the numerical scheme which was developed by Park et
al. [13] for the reduced MHD equations, and is extended to
the full MHD equations. Especially, the coordinate system
twisted along the toroidal direction is employed for saving
calculation regions. In the first step, the pressure satisfying
B · ∇P = 0 is obtained as in the PIES code. The code by
Park et al. and the original HINT code solve the equation
by making the magnetic sound wave decay. The HINT2
code is improved so as to solve the equation B · ∇P = 0
directly by tracing the field lines. In the second step, a re-
laxation precess of the field is conducted with the equation
of motion and the Faraday’s law with P fixed for obtaining
the magnetic field satisfying the force balance condition.

Our numerical calculation method in this study is

based on the concept of the code by Park and the HINT
code. We treat MHD equilibria corresponding to the re-
duced MHD equations in a straight configuration and in-
cluding a static magnetic island with a single helicity
mode. Thus, we develop a more effective method than
these codes. As described in Sec. 2, the cylindrical coor-
dinates are utilized, and the Fourier expansion is employed
in the poloidal and the toroidal directions. In the first step,
a method utilizing a diffusion equation parallel to the mag-
netic field is employed, and an ordinary differential equa-
tion is solved in the second step. Therefore, the practi-
cal procedure is different from that of the HINT and the
HINT2 codes. On the other hand, in general, not only the
pressure diffusion parallel to the field, but also the diffu-
sion perpendicular to field can affect the equilibrium pres-
sure profile. Thus, we develop the code so as to include the
diffusion perpendicular to the field in the first step.

This paper is organized as follows. The two-step
approach for the equilibrium calculation is explained in
Sec. 2. The equilibrium equations and the incorporation
of the static islands are also described. In Sec. 3, the resul-
tant equilibrium pressure is shown and the properties are
discussed. In Sec. 4, the equilibrium including the diffu-
sion perpendicular to the field is discussed. Concluding
Remarks are given in Sec. 5.

2. Two-Step Approach for Equilib-
rium Calculation
Here the numerical scheme to obtain MHD equilib-

ria including static magnetic islands for the reduced MHD
equations in a straight heliotron configuration is described.
In a straight heliotron configuration, the normalized re-
duced MHD equations for the poloidal flux Ψ , the stream
functionΦ and the plasma pressure P in the cylindrical co-
ordinates (r, θ, z) are given by the Ohm’s law,

∂Ψ

∂t
= −B · ∇Φ, (1)

the vorticity equation,

dU
dt
= −B · ∇Jz +

1
2ε2
∇Ω × ∇P · z, (2)

and the plasma pressure equation,

dP
dt
= κ⊥∇2

⊥P + κ‖(B · ∇)(B · ∇)P. (3)

The magnetic field B(r, θ, z) is expressed as

B(r, θ, z) = z + z × ∇Ψ (r, θ, z), (4)

where z denotes the unit vector in the z direction. Here,
U(r, θ, z) and Jz(r, θ, z) are the vorticity in the negative z
direction and the current density in the z direction, respec-
tively. They are defined as

U = ∇2
⊥Φ and Jz = ∇2

⊥Ψ , (5)
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where ∇2⊥ is written as

∇2
⊥ =

1
r
∂

∂r
r
∂

∂r
+

1
r2

∂2

∂θ2
. (6)

The convective time derivative is given by

d
dt
=
∂

∂t
+ ∇Φ × z · ∇. (7)

The quantity ∇Ω denotes the averaged field line curvature.
The factors ε, β0, κ⊥ and κ‖ are the aspect ratio, the beta
value at the magnetic axis, the perpendicular and the par-
allel pressure diffusion coefficients, respectively.

The quantities (r, z, t, Ψ , Φ, P, U, Jz, κ⊥, κ‖) are
normalized by (a, R0, τA, a2B0/R0, a2/τA, B2

0/2μ0, 1/τA,
B0/μ0R0, a2/τA, R2

0/τA), respectively. Here, B0, a, 2πR0

and μ0 denote the magnetic field at the magnetic axis, the
plasma radius, the one period length in z direction and the
vacuum permeability, respectively. The Alfvén time τA is
given by τA = R0

√
μ0ρ/B0, where ρ is the mass density.

The equilibrium corresponding to Eqs. (1)∼(3) has to
satisfy the condition that the pressure is constant along a
field line, which is given by

B · ∇P = 0, (8)

in arbitrary topology and the force balance equation,

−B · ∇Jz +
1

2ε2
∇Ω × ∇P · z = 0. (9)

Equations (8) and (9) are coupled equations for
Ψ (r, θ, z) and P(r, θ, z) to be solved. We express P(r, θ, z)
and Ψ (r, θ, z) as the sum of the cylindrical symmetry com-
ponent and other components as follows:

P(r, θ, z) = Psym(r) + P̃(r, θ, z), (10)

Ψ (r, θ, z) = Ψsym(r) + Ψ ext
m,n(r, θ, z) + Ψ̃ (r, θ, z). (11)

Here, Psym(r) and Ψsym(r) denote the symmetry compo-
nents and Ψ ext

m,n is the external poloidal flux corresponding
to the external field, which generates static magnetic is-
lands with the mode number of (m, n). The tilde indicates
the variation quantity of equilibrium due to the external
field. In the case that the system is cylindrical symmetry
without an external field, any functions of r for Psym(r) and
Ψsym(r) are the solutions of Eqs. (8) and (9).

It is useful to express P̃, Ψ̃ ,Ψ ext
m,n with the Fourier series

to solve Eqs. (8) and (9) as follows:

P̃(r, θ, z) =
∑
m,n

P̃m,n, P̃m,n = P̂m,n(r) cos(mθ − nz),

(12)

Ψ̃ (r, θ, z) =
∑
m,n

Ψ̃m,n, Ψ̃m,n = Ψ̂m,n(r) cos(mθ − nz),

(13)

Ψ ext
m,n(r, θ, z) = Ψ̂ ext

m,n(r) cos(mθ − nz), (14)

Fig. 1 Flow chart of the scheme.

where “∧” means the Fourier coefficients. As is discussed
in Refs. [7–9], Ψ̂ ext

m,n(r) is given by the solution of no-
current condition,

∇2
⊥Ψ

ext
m,n(r, θ, z) = 0, (15)

under the boundary conditions of

Ψ̂ ext
m,n(0) = 0 and Ψ̂ ext

m,n(1) = Ψb. (16)

Here, Ψb is the value of the external poloidal flux at the
plasma boundary. In the case that there exists only the
static magnetic island with a single mode, only the single
helicity modes of m/n = const. are sufficient in the expres-
sion of Eqs. (12) and (13) because of the helical symmetry.
In this work, we treat the equilibrium including the static
island with a single mode of (m, n) = (1, 1). In this case,
Ψ ext

1,1 generating the island is given by

Ψ ext
1,1 (r, θ, z) = Ψbr cos(θ − z), (17)

as the solution of Eq. (15).
In this paper, we solve Eqs. (8) and (9) in two separate

steps as shown Fig. 1. These two steps are iterated until the
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MHD equilibrium is obtained. In the first step, P satisfying
Eq. (8) is obtained with Ψ fixed. In order to solve Eq. (8),
we employ a diffusion equation parallel to the magnetic
field given by

∂P
∂t
= κ‖(B · ∇)(B · ∇)P. (18)

The pressure P constant along the field line is obtained
when the stationary state of Eq. (18) is achieved. This
equation is expanded in the Fourier series. In the present
calculation, the modes in the range of 0 ≤ n ≤ Np with
Np = 2 are employed in Eq. (12). Then, P is expressed as

P(r, θ, z) = Psym(r) +
2∑

n=0

P̂n,n(r) cos(nθ − nz). (19)

The Fourier component of Eq. (18) for each mode number
of n is written as follows:

∂P̂0,0

∂t
=
κ‖Ψb

2

[
(1 −´ι)

r
P̂1,1 +

Ψb

r
d
dr

(Psym + P̂0,0)

+ (1 −´ι)
dP̂1,1

dr
− d´ι

dr
P̂1,1

+ Ψb
d2

dr2
(Psym + P̂0,0)

− Ψb

2

(
d2P̂2,2

dr2
+

3
r

dP̂2,2

dr

) ]
, (20)

∂P̂1,1

∂t
= κ‖

{
− (1 −́ ι)

[
(1 −́ ι)P̂1,1

+ Ψb
d
dr

(Psym + P̂0,0)

]

+
Ψ2

b

4

(
d2P̂1,1

dr2
+

1
r

dP̂1,1

dr
− 1

r2
P̂1,1

)

+
3Ψb

2
(1 −́ ι)dP̂2,2

dr

+ 3Ψb(1 −́ ι) P̂2,2

r
− Ψb

d´ι
dr

P̂2,2

}
, (21)

and

∂P̂2,2

∂t
= κ‖

{
− 2(1 −́ ι)

[
2(1 −´ι)P̂2,2

+
Ψb

2

(
dP̂1,1

dr
− 1

r
P̂1,1

)]

+
Ψb

2

[
1 −´ι

r
P̂1,1 +

Ψb

r
d
dr

(Psym + P̂0,0)

+
d´ι
dr

P̂1,1 − (1 −´ι)
dP̂1,1

dr

]

− Ψb
d2

dr2
(Psym + P̂0,0)

+
Ψ2

b

2

(
d2P̂2,2

dr2
+

1
r

dP̂2,2

dr
− 4

r2
P̂2,2

)}
. (22)

Here,´ι(r) is the rotational transform and is expressed with
the components of Ψ as

´ι(r) =´ιsym(r) + ˜´ι(r), (23)

where

´ιsym(r) =
1
r

dΨsym(r)

dr
and ˜´ι(r) =

1
r

dΨ̂0,0(r)
dr

.

(24)

In order to judge the achievement of the steady state
of Eq. (18), we define a parameter of Kn for each mode
number as

Kn =

∫ 1

0
{P̂n,n(r)}2rdr. (25)

We calculate the growth rate γn given by

γn =
1

Kn

dKn

dt
, (26)

and dγn/dt every time step in the time evolution. When
both conditions of

|γn| < εp and
∣∣∣∣dγn

dt

∣∣∣∣ < εp (εp 
 1), (27)

are satisfied simultaneously for each mode, we judge that
the steady state is achieved.

In the second step, Eq. (9) is solved with P fixed,
which is obtained by the first step. To obtain the equi-
librium including the static magnetic island with the single
mode (m, n)=(1,1), we employ the modes in the range of
0 ≤ n ≤ NΨ with NΨ = 1 for Ψ . In this case, Eq. (11) is
written as

Ψ (r, θ, z) = Ψsym(r) + Ψbr cos(θ − z)

+ Ψ̂0,0(r) + Ψ̂1,1(r) cos(θ − z). (28)

From Eq. (5), Jz is expressed as

Jz(r, θ, z) = Jzsym(r) + Ĵz0,0(r) + Ĵz1,1(r) cos(θ − z).

(29)

In this study, no current condition for cylindrical equilib-
rium, Jzsym = 0 is assumed. The averaged field line curva-
ture dΩ/dr is fixed to dΩsym/dr, which is given by [16]

dΩsym

dr
=

Ntε
2

l
1
r2

d
dr

(r4

´ιsym), (30)

in the cylindrical geometry, where Nt and l are the toroidal
period number and the pole number, respectively. We also
expand Eq. (9) in the Fourier series. The n = 0 compo-
nent of Eq. (9) is satisfied trivially in this case. The n = 1
component is written as

−z · ∇J̃z1,1 − [Ψsym + Ψ̃0,0, J̃z1,1]

−[Ψ ext
1,1 + Ψ̃1,1, J̃z0,0] +

1
2ε2

[Ωsym, P̃1,1] = 0, (31)

where [ f , g] is the Poisson bracket which is defined as

[ f , g] = ∇ f × ∇g · z. (32)
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Equation (31) has the solution of

Ψ̃1,1 = J̃z1,1 = 0, (33)

and Ψ̃0,0 satisfying

dĴz0,0

dr
= − 1

2ε2Ψbr

dΩsym

dr
P̂1,1. (34)

Thus, the force balance equation (9) is reduced to an ordi-
nary differential equation for Ψ̂0,0. We obtain the solution
for Ψ by solving Eq. (34) for Ψ̂0,0 and substituting it into
Eq. (28).

The width of the magnetic island wi is evaluated by
using the solution of Ψ , where the subscript i means the
number of the iteration. The two steps described above are
iterated until the width wi is converged. When the change
rate δwi satisfies the condition,

|δwi| < εw (εw 
 1), (35)

we judge that the MHD equilibrium is obtained, where δwi

is defined as

δwi =
wi − wi−1

wi−1
. (36)

The island width is calculated from the shape of the
magnetic island. The shape can be drawn by tracing the
field line equations given by

dr
dz
=

Br

Bz
, (37)

and

dθ
dz
=

Bθ
rBz
. (38)

In the case of the helical symmetry with the mode num-
bers of (m, n), the magnetic island shape can be drawn in
an efficient way rather than tracing the Poincaré plots. We
express the solution for Eqs. (37) and (38) as (r(z), θ(z)) for
the initial condition of (r(z0), θ(z0)) at z = z0. In the change
of the z direction, the magnetic islands rotate (m/n)(z − z0)
in the θ direction with keeping the shape. We can obtain
the island shape at the cross section of z = z0 by plotting
the line of (r(z), θ(z)− (m/n)(z−z0)). This procedure corre-
sponds to subtracting the phase (m/n)(z− z0) in θ direction
from the solution θ(z).

In the case of the magnetic island with (m, n), there ex-
ist the X-point and the O-point at the positions where the
right hand side of Eq. (38) equals to m/n. When the mode
numbers are (m, n)=(1,1), Eq. (38) combined with Eqs. (4),
(24), (28) and (33) becomes

dθ
dz
=´ι +

Ψb

r
cos(θ − z). (39)

In the case of positive Ψb, there exist X-point at θ = 0 and
O-point at θ = π in the z = 0 cross section. The radial
coordinates r’s for X-point and O-point satisfy

´ι +
Ψb

r
= 1 and ´ι −

Ψb

r
= 1, (40)

respectively. Therefore, the radial positions of X-point, O-
point and the rational surface with´ι = 1 are different be-
cause of the finite value of Ψb.

3. Resultant Equilibrium
By using the method explained in Sec. 2, we calculate

the MHD equilibria including static magnetic islands in a
straight heliotron plasma. We employ the magnetic con-
figuration parameters of Nt = 10, l = 2 and ε = 0.16,
which correspond to the LHD configuration. The pressure
profile,

Psym(r) = β0(1 − r4)2, P̂n,n(r) = 0 (0 ≤ n ≤ 2),

(41)

with β0 = 0.16% is used for the initial condition. The
profile of the initial rotational transform is shown in Fig. 2.
The profile of Ψsym is obtained by applying this profile to
Eq. (24). The value of Ψb and the initial condition for Ψ̂m,n

are set to be Ψb = 10−3 and Ψ̂m,n = 0, respectively. We
employ εp = 5.0 × 10−7 and εw = 10−6 as the convergence
parameters.

Figure 3 shows the time evolution of Kn, |γn| and
|dγn/dt| over the whole iteration. Dashed lines show the
times when the steady state condition in the first step is
achieved and the second step is conducted. It is found
that the steady state of each component P̂n,n is smoothly
achieved for each iteration. Figure 4 shows wi and |δwi| at
the times of the dashed lines in Fig. 3 as functions of the
iteration number. As the iteration number increases, the
island width becomes converged. The convergence con-
dition is satisfied at i = 12, and then, the equilibrium is
obtained.

Figure 5 shows the profiles of the components of the
equilibrium pressure P̂n,n. The component of P̂0,0 is dom-
inant and P̂2,2 is much smaller than P̂1,1. The ratios of
the maximum value of |P̂2,2| to those of |P̂0,0| and |P̂1,1| are

Fig. 2 Profile of initial rotational transform. Dashed line shows
the position of the rational surface with´ι = 1.
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Fig. 3 Time evolution of (a) Kn, (b) |γn| and (c) |dγn/dt| for
κ⊥/κ‖ = 0. Dashed lines indicate the times when the
steady state condition is satisfied and the second step is
conducted.

|P̂2,2|/|P̂0,0| = 7.1 × 10−4 and |P̂2,2|/|P̂1,1| = 1.4 × 10−2, re-
spectively. This result confirms that Np = 2 is adequate in
the first step calculation.

Figures 6 (a) and (b) show the contour of the con-
stant pressure and the magnetic surfaces at z = 0 cross

Fig. 4 Variation of (a) wi and (b) δwi for iteration number. The
plots of κ⊥/κ‖ = 0 correspond to the case of Fig. 3.

Fig. 5 Profiles of P̂n,n. Dashed lines indicate the position of the
rational surface. Blue lines indicate the position of the
separatrix of the island at θ = π.

section in the resultant equilibrium. Since P̂2,2 is much
smaller than P̂0,0 and P̂1,1 as described above, the contri-
bution of P̂2,2 to the pressure contour is negligible. For this
reason, we exclude P̃2,2 in Eq. (19) when we plot the pres-
sure contour in Fig. 6 (a). Figures 6 (a) and (b) show a good
agreement between the pressure contour and the magnetic
surfaces. The separatrix exists also in the pressure con-
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Fig. 6 Plots of (a) pressure contour and (b) magnetic surfaces of
the resultant equilibrium at β0 = 0.16% on z = 0 cross
section and (c) relative error of pressure along field lines.
Each field line in (c) is on the surface with the same color
in (b).

tour which corresponds to that of the magnetic island. Fig-
ure 6 (c) shows the relative error δC in the pressure along
the field line. The definition of δC is given by

δC(r, θ − z) =
P(r, θ − z) − P(r0, θ0 − z0)

P(r0, θ0 − z0)
. (42)

The relative error is evaluated along the field line of the
total pressure without the component of n = 2. Since the
phase angle θ − z varies along the field line, we evaluate
δC as a function of θ − z. The subscript 0 means the coor-
dinates of the starting point of the field line. In Fig. 6 (c),
θ0 = π and z0 = 0 are used. The field lines correspond-
ing to r0= 0.329, 0.591, 0.781, 0.816 and 0.950 are chosen
here. For fixed values of θ0 and z0, the radial coordinate
r0 identifies the magnetic surface on which the field line is
traced. The field lines of r0 =0.329, 0.591 and 0.781 are on
the magnetic surfaces inward of the separatrix (red, brown
and green), r0 = 0.816 the separatrix (blue) and r0 = 0.950
the surface outward of the separatrix (purple), respectively.
Each line in Fig. 6 (c) corresponds to the magnetic surface
with the same color in Fig. 6 (b). Figure 6 (c) shows that
the largest error of the pressure appears on the field line of
the separatrix (blue). Even in the case, however, the value
is quite small and less than 5.0 × 10−3. Therefore, Eq. (8)
is satisfied in a good accuracy.

Figure 7 (a) shows the equilibrium pressure profile
along the line connecting (r = 1, θ = 0, z = 0) and
(r = 1, θ = π, z = 0). Figures 7 (b) and (c) are the enlarged
figures around the magnetic island at θ = 0 and θ = π,
respectively. The pressure profiles of both cases with and
without P̃2,2 are plotted in Fig. 7. However, the difference
between the cases is too small to be distinguished because
|P̂2,2| is much less than the others. As shown in Fig. 7, the
pressure profile is flat not only at the O-point but also at the
X-point. This property is explained with the expression of
the Fourier component of B · ∇P. In the equilibrium, each
Fourier coefficient of B · ∇P is zero. The (m, n) = (1, 1)
coefficient is given by

(B · ∇P)1,1 = (1 −́ ι)P̂1,1 + Ψb
d
dr

(Psym + P̂0,0), (43)

under the condition of P̂n,n = 0 for n ≥ 2. Since the first
term equals to zero at the´ι = 1 surface, the relation of

d/dr(Psym + P̂0,0) = 0 must be satisfied. This equation
indicates that the pressure profile is flat in the annular re-
gion near the surface involving both the O-point and the
X-point.

In Figs. 7 (b) and (c), the horizontal purple line shows
the pressure value corresponding to the separatrix in the
pressure contour shown in Fig. 6 (a). These figures show
that the pressure has the same value at the X-point and at
the separatrix at θ = π of the magnetic surfaces. This result
also confirms that the separatrix in the pressure contour
coincides with the separatrix in the magnetic surfaces.
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Fig. 7 Profile of resultant equilibrium pressure (a) along the line
connecting (r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0)
and its enlargements at (b) θ = 0 and (c) θ = π. Red
solid line and brown dashed line show the profiles of

Psym+

1∑
n=0

P̃n,n and Psym+

2∑
n=0

P̃n,n, respectively. Black line

shows the profile of Psym. Vertical dashed lines indicate
the position of the rational surface. Blue lines indicate the
positions of the separatrix of the magnetic island at θ = π.
Horizontal purple lines indicate the value of pressure
at the separatrix in the pressure contour surfaces in
Fig. 6 (a), P = 3.942 × 10−4.

4. Pressure Profile with Perpendicu-
lar Heat Conductivity
The effect of the pressure diffusion perpendicular to

the field on the equilibrium pressure is also studied. In
the magnetically confined plasma with a pressure gradi-
ent, the pressure is diffused following Eq. (3). The time
scale of the parallel diffusion is much shorter than that of
the perpendicular diffusion. Therefore, in the steady state,
a static MHD equilibrium corresponding to the condition
B · ∇P = 0 is considered to be achieved in a short time
as the lowest approximation. As the next approximation,
we consider a steady state including the perpendicular dif-
fusion, which can be obtained in the transport time scale
in the order of 10 msec ∼ 100 msec. In the steady state, a
flow consistent with the diffusion should be taken into ac-
count. However, the incorporation of such a flow is quite
complicated because the flow is determined not only by
the pressure equation but also other transport equations.
Thus, we assume the steady state with no flow for the ap-
proximation. Furthermore, for the steady state including
the perpendicular diffusion, a heat source S P is needed in
the pressure equation to compensate the decay of the total
pressure. Here we also assume the source term correspond-
ing to the form of S P = −∇2⊥Psym in the pressure equation.
Then, the resultant equation is given by

κ⊥∇2
⊥P̃ + κ‖(B · ∇)(B · ∇)P = 0. (44)

By solving this equation together with Eq. (9), we can ob-
tain a steady state with the perpendicular pressure diffusion
with no flow including a static magnetic island. The solu-
tion is not an MHD equilibrium because the condition of
B · ∇P = 0 is not satisfied. However, we can obtain the
contribution of the perpendicular diffusion on the MHD
equilibrium from the solution. To solve the equations, we
employ the diffusion equation given by

∂P
∂t
= κ⊥∇2

⊥P̃ + κ‖(B · ∇)(B · ∇)P, (45)

instead of Eq. (18) for the first step and utilize the same
scheme as in Sec. 2 for the second step.

Figure 8 shows the time evolution of Kn, |γn| and
|dγn/dt| for overall iterations in the case with κ⊥/κ‖ = 10−7.
In the first step, the steady state of Eq. (45) is obtained as
in the case of κ⊥/κ‖ = 0. As shown in Fig. 4 (b), the con-
vergence for the island width is also obtained in the result
of the two-step iteration. In the case of κ⊥/κ‖ = 10−7, the
convergence is obtained at i = 6. Similar time evolutions
are obtained in the cases with κ⊥/κ‖ = 10−6, 10−8, 10−9 and
10−10 as shown in Fig. 4 (a). The island width in the re-
sultant state decreases compared with the vacuum width in
the case of κ⊥/κ‖ = 0 while the island widths increase in
the cases of κ⊥/κ‖ � 0. Figure 9 shows the dependence
of the resultant pressure profile along the line connecting
(r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) on κ⊥/κ‖.
As κ⊥/κ‖ increases, the pressure gradient at the X-point
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Fig. 8 Time evolution of (a) Kn, (b) |γn| and (c) |dγn/dt| for
κ⊥/κ‖ = 10−7. Dashed lines indicate the times when the
steady state condition is satisfied and the second step is
conducted.

enhances. In the case with κ⊥/κ‖ = 10−7, the flat region
almost disappears at the X-point. The local flat structure
at the O-point is maintained for the finite value of κ⊥/κ‖,
however, the width of the flat region decreases with the in-
crease of κ⊥/κ‖.

In spite of that we do not take the diffusion for Psym(r)
into account, the reduction of P(r = 0) in the resultant state
is seen in Fig. 9 (a). This is due to the fact that P̂0,0 has a

Fig. 9 Profiles of resultant pressure (a) along the line connecting
(r = 1, θ = 0, z = 0) and (r = 1, θ = π, z = 0) and its
enlargements at (b) θ = 0 and (c) θ = π for κ⊥/κ‖ = 0,
10−9, 10−8 and 10−7.

negative finite value at r = 0 generated by the diffusion per-
pendicular to the field as shown in Fig. 10. Two kinds of
contribution of the perpendicular diffusion on P̂0,0 around
the rational surface and the magnetic axis lead to the neg-
ative value of P̂0,0(r = 0). As shown in Fig. 5, the profile
of P̂0,0 locally has a negative value region just inside the
rational surface in the case of κ⊥/κ‖ = 0. In the case of
finite κ⊥/κ‖, the radial diffusion term works so as to reduce
the curvature of the profile. It is followed that the region
with the negative P̂0,0 is enlarged. On the other hand, in
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Fig. 10 Profiles of P̂n,n for (a) κ⊥/κ‖ = 10−9 and (b) κ⊥/κ‖ = 10−7.
Dashed lines indicate the position of the rational surface.
Blue lines indicate the position of the separatrix of the
island at θ = π.

the region around the magnetic axis, P̂0,0 is almost zero in
the case of κ⊥/κ‖ = 0 as shown in Fig. 5, because the island
effect is limited to the region around the rational surface.
In the cases of finite κ⊥/κ‖, the first term is dominant in
Eq. (44), and therefore, P̂0,0 satisfies the equation of

(∇2
⊥P̃)0,0 =

d2P̂0,0

d2r
+

1
r

dP̂0,0

dr
= 0, (46)

in this region. The solution of Eq. (46) which is regular at
the axis is a constant. Therefore, the finite value of κ⊥/κ‖
makes the pressure profile constant around the axis. Since
the solution of P̂0,0 has to be continuous between the re-
gions around the rational surface and the axis, P̂0,0 has a
finite and negative value at r = 0 as shown in Fig. 10. That
is, P(r = 0) is decreased in the cases with a finite value of
κ⊥/κ‖. The absolute value of the decrease of P̂0,0(r = 0)
does not change monotonously for the increase of κ⊥/κ‖ as
shown in Fig. 9 (a). This is because the two contributions
are almost in a trade-off relation. In the increase of κ⊥/κ‖,
the maximum absolute value of P̂0,0 around the rational
surface is decreased because of the reduction of the curva-
ture of P̂0,0 while the contribution making P̂0,0 constant is
enhanced.

5. Concluding Remarks
An MHD equilibrium including a static magnetic is-

land for the reduced MHD equations at β0 = 0.16% is ob-
tained in a straight heliotron configuration. The equations
to be solved are the coupled equations for the poloidal flux
and the pressure. The equations are solved by iterating two
numerical steps. In the formulation, the Fourier expansion
is employed and the static island with (m, n) = (1, 1) is
treated. In the first step, the equation of B · ∇P = 0 is
solved with the poloidal flux fixed so that the pressure con-
stant along the field line is obtained. In the present study,
we utilize a diffusion equation parallel to the field line to
solve this equation. The steady state solution of the dif-
fusion equation corresponds to the pressure constant along
the field line. Three Fourier components of P̂0,0, P̂1,1 and
P̂2,2 are necessary at least to obtain the steady state. In the
final equilibrium pressure, P̂2,2 is negligibly small com-
pared with other components at β0 = 0.16%, and there-
fore, it is not necessary in the second step. Nevertheless,
P̂2,2 is needed for the sufficient steady state solution in the
first step. In the second step, the force balance equation
for the poloidal flux, which is derived from the vorticity
equation, is solved with the pressure fixed. Since P̂2,2 and
higher pressure components can be neglected, the Fourier
series of the equation is truncated up to n = 1. In this
case, the condition of Ψ̃1,1 = 0 and an ordinary differential
equation for Ψ̃0,0 are derived from the force balance equa-
tion. Therefore, only Ψ̃0,0 is updated with the solution of
the ordinary equation in the second step.

In the resultant equilibrium, we obtain a pressure pro-
file which corresponds to the island structure. A separatrix
is seen also in the pressure contour plot, however, the pres-
sure gradient is zero at the rational surface. That is, local
flattening appears at not only the O-point but also the X-
point. Thus, the existence of the equilibrium with the pres-
sure profile flat at the X-point is explicitly demonstrated in
the present study. The clear identification of the X-point is
required for the demonstration, which is possible only in
the cylindrical geometry and the single helicity configura-
tion employed in the present work, while the X-point is not
clearly identified in three-dimensional equilibria due to the
overlap of the multiple Fourier components in general. The
equilibrium depends on the symmetry part of the pressure
and the poloidal flux, Psym and Ψsym, which are used as
the initial condition, even if the magnetic field is almost
vacuum one.

It is noted that this scheme of the second step cannot
be applied to higher beta cases as it is. At the low beta case
such as β0 = 0.16%, we obtain a satisfying accuracy in the
calculation with only a small number of the Fourier series
for Ψ̃ and P̃. This is attributed the fact that the solution of
the magnetic field is close to the vacuum field. At higher
beta, the deviation of the magnetic island shape from the
vacuum one is enhanced, which degrades the accuracy of
the approximation with the small number of the Fourier
modes. Therefore, higher components are necessary in the

1403070-10



Plasma and Fusion Research: Regular Articles Volume 7, 1403070 (2012)

second step for keeping the accuracy. In this case, the force
balance equation becomes coupled equations for multiple
number of Ψ̃n,n, not a single ordinary differential equation.

On the other hand, we also examine the effect of the
pressure diffusion perpendicular to the field line in the first
step. As the perpendicular diffusion coefficient increases,
the pressure gradient is enhanced at the X-point. A pres-
sure profile flattened only at the O-point not the X-point
can be obtained for a sufficiently large coefficient. The
pressure at the axis is also affected by the perpendicular
diffusion so as to be decreased through the change in the
radial profile of P̃0,0. The present result is obtained under
the assumption of no flow steady state with a special type
of heat source. Precise analysis with more realistic flow
and heat source remains as a future work.
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