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Following the atomic model based on the microfield in a plasma for bound states [Astrophysical Journal
532, 670 (2000)], I have considered an atomic modeling for computing the free-electron state-density based on
the plasma microfield. In the atomic model based on the plasma microfield, it is considered that an ion in plasma
is immersed in a uniform electric field that is the contribution of field values averaged over the other ions in the
plasma. It has been expected a modeling for the free-state density consistent with its bound state, because the
resulting free-state densities by the simple atomic model based on the plasma microfield has been found to be
invalid. In this study, I have obtained a physically appropriate free-state density under the assumption that the
large electric field component can be considered to exist due to the electric field originating from the nearest
neighboring ion and the resulting potential around the ion shows mirror symmetry about the saddle point. The
resulting state density is consistent with the experimental results. The inclusion of the free-state density has
caused a slight deviation in the values of the average ionization degree of hydrogenic plasmas.
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1. Introduction
Final objective of this study is finding a method to

compute the degree of ionization of plasma, which is es-
sentially the analysis of the atomic processes occurring in
plasma, based on the plasma microfield. First, I reexam-
ine the conventional method to compute the degree of the
ionization of plasmas and show the importance of the state
density modeling to the resulting values of the average ion-
ization degree.

In the state of local thermodynamic equilibrium
(LTE), the ratio of the product of the number density of the
(Z + 1)-charged ion NZ+1, and that of the electron Ne(E)
of its energy E, to that of the combined Z-charged ion
NZ , is determined by the ratio of the statistical weights of
the states of the (Z + 1)-charged ion UZ+1 to that of the
Z-charged ion UZ , the Boltzmann factor between the two
states as given by exp(−(E + Ip)/kBTe), and the number of
electron states in free space per unit volume 2(4πp2/h3)dp,
i.e.,

NZ+1Ne(E)
NZ

=
UZ+1

UZ
exp

(
−E + Ip

kBTe

)
2

4πp2

h3
dp. (1)

In the expression involving the Boltzmann factor, Ip, kB,
and Te denote the ionization potential from the Z-charged
to the (Z + 1)-charged state, the Boltzmann constant, and
the electron temperature, respectively. In the expression
involving the number of electron states, h denotes Planck’s
constant. With respect to the energy of the free electron
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and its momentum p, the expression E = p2/2me is satis-
fied, and here, me denotes the mass of the electron. Trans-
lating the free electron’s momentum to its equivalent en-
ergy and integrating Eq. (1) over the energy range of the
free electron for E > 0, we obtain

NZ+1Ne

NZ
=

UZ+1

UZ
exp

(
− Ip

kBTe

)
8π

√
2me

3

h3

×
∫ ∞

0

√
E exp

(
− E

kBTe

)
dE

=
UZ+1

UZ
exp

(
− Ip

kBTe

)
2

(
2πmekBTe

h2

)3/2

. (2)

This equation is called the Saha-Boltzmann equation. Ap-
plying the equation to various ionic species including their
excited states in plasma, we can compute the population
of all ionic species in the plasma along with the average
ionization degree obtained by Zav = Ne/N0 from this com-
puted population, where N0 is the total number density of
ion and atom defined by

∑
NZ .

Practically, we need to determine the number of bound
states when we apply the Saha-Boltzmann equation for re-
alistic plasmas. For the case of hydrogenic plasmas, Fig. 1
shows one of the difficulties arising out of the convention-
ally used simple model in which the bound states exist up
to a fixed maximum principal quantum number. The con-
tours for an average ionization degree of 0.5 are plotted
for three cases in which the maximum principal quantum
numbers of the considered bound states are n = 5, 10, and
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Fig. 1 Contours of average ionization degree are 0.5 of hydro-
genic plasmas. The maximum principal quantum num-
bers of the considered bound states are n = 5, 10, and
30.

30. From Fig. 1, it can be observed that the plasma den-
sity and its temperature for an average ionization degree of
0.5 varies depending on the maximum principal quantum
number of the bound state in the atomic process model. In
other words, the plasma density and its temperature for an
average ionization degree of 0.5 can be varied by changing
the maximum principal quantum number.

In order to address this ambiguity, Nishikawa has
suggested a simple analytical expression that allows for
the counting of the number of bound states based on the
plasma microfield [1]. In the model, hydrogenic ions are
assumed to be immersed in a statistically distributed uni-
form electric field, i.e., the microfield in the plasma. As
a result, the potential profile around the ion in plasma is
given by the superposition of the ion’s Coulomb potential
Zae/4πε0r and the potential due to the uniform external
field F; here, Za, e, and ε0 denote the nuclear charge of
the ion, the elementary charge, and the permittivity of free
space, respectively. The hydrogenic ion has a bound state
whose energy is given by −mee4Za

2/8ε02h2n2, and this en-
ergy is assumed to be unchanging even in the external elec-
tric field. In this case, the potential distribution around the
ion shows a saddle point. The height of the saddle point
varies as the function of the strength of the uniform exter-
nal electric field. I determine that the electronic state is
that of a free electron for energies above this saddle point
and that the energy values below the saddle point indicate
bound states. Although we now know this is to be quantum
mechanically false, this picture can still provide a conve-
nient basis for further improved treatment. From the above
assumption, the threshold electric field till which the bound
state n exists is given as

Fc
n =
πme

2e5Za
3

64ε03h4n4
. (3)

Although a minor correction factor may be required in
the equation, its contribution of determining the threshold
principal quantum number n from the electric field Fc

n is
expected to be of the order of the one fourth power of the
factor. The probability that the bound state n exists is given
by the expression

wn =

∫ Fc
n

0
dF P(F), (4)

where P(F) represents the distribution function of the mi-
crofield. Using the Holtsmark field, given as

H(β)=F0W(F)=
2
π
β

∫ ∞

0
x exp[−x3/2] sin(βx) dx,

(5)

as the statistically distributed uniform microfield F, we can
compute Eq. (4), where β = F/F0, as

F0 = 2π

(
4Np

15

)2/3 Zpe

4πε0
, (6)

where Np and Zp denote the number density and the charge
state of the perturbing ion, respectively. The term F0 is
called the Holtsmark normal field strength [2]. The Holts-
mark field is obtained by summing up the contribution of
the electric field from evenly spread ions over space, i.e.,
the Coulomb interaction between two ions is neglected.
Under certain circumstances where the kinetic energy of
ions is considerably larger than that of the interaction, the
field distribution given by the Holtsmark field becomes ap-
propriate. The simple expression for the probability that
the bound state exists, as derived in Ref. [1], is obtained by
using the approximation that H(β) ∼ 4β2/3π near β = 0. It
must be noted that given by the equations used in Ref. [1]
are incorrect. The correct expression for the probability of
the state n is given by

wn =

∫ Fc
n

0
dFP(F) =

52Za
9

217π4n12Zp
3Np

2
, (7)

i.e., not the 8th power of Za but the 9th power of Za. For
the hydrogenic case, Za = Zp = 1.

At any rate, we can compute the average ionization
degrees using the reduced statistical weights of the bound
states as obtained from Eq. (4) and the state density for
a free electron in free space as described in Eq. (2). For
the completeness of the atomic process modeling based on
the plasma microfield, it is necessary to include the effect
of the plasma microfield in the state density modeling for
free electron in addition to the bound state. As described
in Fig. 1, the values of the average ionization degree are
sensitive on the state density modeling. In this study, we
attempt to find an appropriate modeling of the state density
for a free electron and evaluate the sensitivity on that.
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2. State Density for Free Electron
based on Plasma Microfield
In the conventional atomic process modeling, the

translation of the electron’s momentum to its equivalent
energy in the free-state density calculations is carried out
using the equations E = p2/2me and 2 · 4πp2dp/h3. In the
present modeling, an ion is assumed to be in a potential
that is composed of the Coulomb potential of its nucleus
and the potential due to the uniform external field. To ac-
commodate this effect, we rewrite the relation between the
electron’s energy and momentum at (r, θ) in the spherical
coordinates inside the ion sphere radius R0 as

p2

2me
= E +

1
4πε0

Zae2

r
+ eFr cos θ. (8)

The ion sphere has a radius R0 such that

4π
3

R0
3Ni = 1. (9)

The second term on the right hand side of Eq. (8) indicates
the contribution of the Coulomb potential of the nucleus
and the third term indicates that of the plasma microfield.
This relation shows that even if the electron energy is zero,
its momentum does not become zero, i.e., the electron has
sufficient kinetic energy to overcome the attractive force
of the nucleus from the classical point of view. The state
density of the free electron including the potential effect is

f (E) =
8π

√
2me

3

h3

∫ ∞

0
H(β) dβ

∫ R0

0
2πr2 dr

×
∫ π

0
sin θ dθ

√
E +

1
4πε0

Ze2

r
+ eFr cos θ. (10)

In the modeling, the free-state density is computed within
the ion sphere of radius R0. Figure 2 shows the free
state density of hydrogenic plasma with ion density Ni =

1016 cm−3 for various values of βmax. The term βmax in-
dicates the maximum value of the integral range of β in
Eq. (10). The reduced statistical weights of the bound
states have been computed by using Eq. (4), and not by
using Eq. (7). For E � 0, the free state density defined by
Eq. (10) asymptotically approaches 8π

√
2me

3E/h3. The
energy is normalized by twice the hydrogenic ionization
potential, 2ERy. To understand the continuity of the state
densities, we show the bound states as a reduced contin-
uous bound state with a statistical weight 2n2 spread over
the energy range between the next higher state and the next
lower state that leads to an area equal to its original sta-
tistical weight 2n2/(En+1/2 − En−1/2), i.e., the area below
each step in Fig. 2 is equal to 2n2. The reduced continu-
ous bound state profile converges to the the asymptotic be-
havior of the number of bound state below E = 0 given
by 2−3/2(−E)−5/2, as calculated by the relation given by
Eq. (8) without including the third term. It may be noted
that the vertical axis represents the logarithm scale. The

Fig. 2 State densities of free and bound states as obtained by
simple atomic model based on plasma microfield for var-
ious values of β in Eq. (10). However, the state density
of the free electron becomes larger than that of its bound
state for the same energy although the values of the free-
state density does not diverge.

numbers indicate the principal quantum numbers of the
state. Hereafter, we refer to the reduced continuous bound
state profile as the reduced bound state density. The two-
dot chain curves show the asymptotic bound state density
given by 2−3/2(−E)−5/2, and the state density of electron in
free space, 8

√
2πme

3E/h3, for reference.
From Fig. 2, we can see that the free state density does

not become zero at E = 0, and it further exists below
E = 0. However, the free-state density obtained by the
simple atomic model based on the microfield is not practi-
cally acceptable since the free-state density has been com-
puted as larger than that of a bound electron of the same
energy although the values of the state density does not di-
verge. The effect on the ion-ion correlation is small in the
case of the small ion number density values discussed here.
The value of Γ, which is the ratio of the potential energy of
two ions in the plasma to its temperature, is nearly equal to
0.05 when the temperature of the hydrogenic plasma with
ion density Ni = 1016 cm−3 is 1 eV. Detailed investiga-
tions show that the difficulty is induced on the potential
far beyond the saddle point inside the ion sphere of ra-
dius R0. Such a large electric field by which the saddle
point is sufficiently inside the ion sphere occurs even in
the low density plasmas, although the probability is rel-
atively small. The position of the saddle point is given
by rs =

√
Zae/4πε0βF0, while the ion sphere radius is

given by Eq. (9). From the equations, it is observed that
the saddle point exists within the ion sphere radius when
β ≥ 52/3/2π1/3 ∼ 0.998. This shows that the saddle point is
within the ion sphere radius in most situations, and the as-
sumption that the large electric field mostly due to the near-
est ion is uniform within the ion sphere radius is inconsis-
tent with the potential measured in real plasmas. In order
to overcome this difficulty, we have attempted to compute
the free-state density by estimating the contribution of the
field values beyond the saddle point assuming the mirror
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Fig. 3 Schematic figure illustrating potential modification to
overcome difficulty arising in simple atomic model in-
cluding plasma microfield when saddle point of potential
is within ion spere radius.

Fig. 4 State density with modification in potential assuming the
mirror symmetry with respect to saddle point for vari-
ous ion number densities ranging from Ni = 1016 cm−3 to
1021 cm−3 for fully ionized hydrogenic plasmas.

symmetry of the potential with respect to the saddle point.
Thus, the potential by which the free-state density is com-
puted is indicated by the solid curve instead of the thick
dashed curve in Fig. 3.

Figure 4 shows the energy dependence of the state
densities of the free and bound states of hydrogenic plasma
by using the above-mentioned potential modeling. The
energy dependence curves are plotted for six cases from
Ni = 1016 cm−3 to 1021 cm−3. From Fig. 4, we can under-
stand that the difficulty in the previous computation is in-
duced by the contribution of the potential on the free-state
density from far beyond the saddle point, and the free-state
densities do not exceed the corresponding asymptotic re-
duced bound state densities for the same energy.

The quantum states up to the principal quantum num-
ber of n = 8 are almost completely existing for Ni =

1016 cm−3. From the state value of n = 9, the bound state
densities gradually decrease, while the free-state density

Fig. 5 Average ionization degree of hydrogenic plasma. The po-
tential is assumed to be mirror symmetry with respect to
the saddle point.

appears and gradually increases as the principal quantum
number becomes larger. Experimentally [3], the bound-
bound spectrum from for state values n = 2 to 8 in hy-
drogenic plasma with Ni = 1.8 × 1016 cm−3 can be clearly
observed, while those for n ≥ 9 are merged with the
free-bound spectrum although the bound-bound spectrum
is broadened due to the Stark effect. For Ni = 9.3 ×
1016 cm−3 in Ref. [3], the bound-bound spectra from for
state values of n = 2 to 6 can be clearly observed while
our model posits bound state existence up to n = 6 for
Ni = 1017 cm−3. From our analysis, we might be able
to provide a physical meaning for the pseudo-continuum
that has been introduced by Däppen [4]. In this light, fu-
ture studies would be required to examine the state density
computation in which the potential distribution and profile
of the nearest neighboring ion are actively considered.

Using the model, we can also compute the average
ionization degree of various plasmas. In the case of the
present model, the free state density f (E) is used instead
of
√

E in Eq. (2), i.e.,

NZ+1Ne

NZ
=

UZ+1

UZ
exp

(
− Ip

kBTe

)

×
∫ ∞

max(− e2Z
4πε0r−eFr cos θ, −2e

√
eZa F
4πε0

)
f (E) exp

(
− E

kBTe

)
dE.

(11)

It is noted that the lower range of the integration on E has
been changed to be from 0 to the larger value of just poten-
tial at the point, −e2Z/4πε0r − eFr cos θ or potential at the

saddle point, −2e
√

eZaF
4πε0

since the state density of which
energy is below the value of its saddle point is assumed to
be bound in this model. Figure 5 shows the average ion-
ization degree of hydrogenic plasma. The dotted curves in
Fig. 5 are the results obtained using Eq. (2), while the solid
curves are those obtained by Eq. (11). From Fig. 5, it is ob-
served that the contours including the potential effect in the
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free-state density deviate slightly to the lower temperature
region since the free-state density exists continuously from
the bound state. The deviation is not very large; however,
the deviation grows larger as the plasma density increases.

In conclusion, I draw attention to one of the features
of the present model in comparison with other models in
which the concept of the ion sphere is used [5]. Most
atomic models that apply the concept of an ion sphere only
consider the plasma effects on the resulting potential in a
spherical fashion. Therefore, we sometimes encounter the
difficulty of the sudden disappearance of a bound state at a
given threshold density when we compute the average ion-
ization degrees over a wide range of plasma density and
temperature. Using the present model, we can avoid such
difficulties since the bound states gradually decrease as the
density increases.

3. Summary
In this study, I have considered an atomic model to

compute the free-electron state-density based on the mi-
crofield in a plasma. In the atomic modeling based on the
plasma microfield, it is considered that an ion in plasma is
immersed in a uniform electric field that is the contribution
of the field values averaged over the other ions in the
plasma. The Holtsmark Field is used to obtain the distribu-
tion of the uniform electric field in plasma throughout this
study. However, the resulting free-state densities obtained
by the simple atomic model are invalid, i.e., the free-state

density becomes larger than those of the bound states. The
problem arises from the presence of a large electric field
component, although its probability of occurrence is rela-
tively small. A large free-state density is induced on the
potential far beyond the saddle point inside the ion sphere
radius. If the large electric field component can be consid-
ered to exist due to the electric field originating from the
nearest neighboring ion, and the resulting potential around
the ion is assumed to show mirror symmetry with respect to
the saddle point when the nearest neighboring ion is within
the ion sphere, the physically appropriate free-state den-
sity, which appears when the bound state disappears, can
be computed. The resulting state density is consistent with
the experimental results. The inclusion of this effect causes
a slight deviation in the values of the average ionization de-
gree of hydrogenic plasmas. This model is different from
most other former models previously used since the state
densities of the free and bound electron are computed us-
ing a non-spherical potential profile.
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