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Super-High Magnetic Fields in Spatially Inhomogeneous Plasma

Anatoly F. NASTOYASHCHIY
RF SRC Troitsk Institute for Innovation and Fusion Research (TRINITI), ul. Pushkovykh, vladenie 12, 142190 Troitsk,

Moscow region, Russia

(Received 28 July 2011 / Accepted 30 November 2011)

The new phenomenon of a spontaneous magnetic field in spatially inhomogeneous plasma is found. The
criteria for instability are determined, and both the linear and nonlinear stages of the magnetic field growth are
considered; it is shown that the magnetic field can reach a considerable magnitude, namely, its pressure can be
comparable with the plasma pressure. Especially large magnetic fields can arise in hot plasma with a high electron
density, for example, in laser-heated plasma. In steady-state plasma, the magnetic field can be self-sustaining.
The considered magnetic fields may play an important role in thermal insulation of the plasma.
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The phenomenon of self-excitation of spontaneous
magnetic fields (SMFs) in plasma was discussed until the
end of 1960s mostly in connection with problems of astro-
physics using the “turbulent dynamo” model, which was
first formulated by Batchelor [1]. The discussion of this
model and the main results of its application can be found
in the monograph of Zeldovich et al. [2]. In the late 1960s
spontaneous magnetic fields were discovered experimen-
tally in a laser spark [3] and the plasma produced by ir-
radiating a solid surface with a laser pulse [4]. Prelimi-
nary estimates of the magnetic field in the laser-produced
plasma, which were grossly overestimated (B ∼ 1 MG at
an electron density of n ∼ 1021 cm−3) gave hope to the
possibility of obtaining an effective magnetic thermal in-
sulation of plasma; however, these expectations were not
realized. The quantities of the magnetic fields in laser plas-
mas and the instability mechanism were thoroughly stud-
ied in [5–7]; it was found analytically in paper [6] and nu-
merically in paper [7] that at the nonlinear stage, the mag-
netic field saturates at ωτe ∼ 1, i.e., the ratio of the cy-
clotron frequency of electrons to the frequency of their col-
lisions with ions is of the order of unity. In the same time
in compressed targets, where the electron density can reach
the values of ∼1027 cm−3 or higher, the magnetic fields at
ωτe ∼ 1 and temperature T ∼ 10 keV can be of the order of
100 MG and above [8]. The kinetic theory for spontaneous
magnetic field was considered in [9].

Below we discuss the appearance of a spontaneous
magnetic field on the basis of the mechanism, which is as-
sociated with the instability of the thermal diffusion cur-
rents flowing perpendicular to the magnetic field and tem-
perature gradient. We will show that in the nonlinear
regime, the magnetic field due to this mechanism can reach
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such values that its pressure becomes comparable with the
plasma pressure; in this case, the ion ωτI � 1 is reached,
resulting in an effective magnetic thermal insulation of
plasma. The rate of the increase in the magnetic field due
to the considered instability can be much slower than due
to non-co linearity of the density and temperature gradi-
ents (in the laser plasma [3–9]), but under conditions of a
steady-state plasma the SMFs emerging fields reach higher
values.

Consider the emergence of a magnetic field for a sim-
ple case of a plane plasma layer. Note that the mechanism
of instability considered is possible only in the plasma area
where plasma current can be closed. It is assumed that the
density and temperature gradients of the plasma are par-
allel to the x axis, their gradients in the symmetry plane
x = 0 being equal to zero; in turn, electric current of ther-
mal diffusion and the magnetic field are parallel to the y
and z axes, respectively. In the hydrodynamic approxima-
tion, atωτe � 1, the magnetic field is related to the electric
current density j by the equation (below we retain the no-
tation from [10])

∂B
∂t
= − c

en
∇n×∇T− c

e
(∇×RT)/n−c

(
∇× j⊥

σ⊥

)
(1)

RT = −0.8nωτeh × ∇T where ωτe � 1 (2)

Here, h is unit vector in the direction of the magnetic field
B and ∇T is the temperature gradient. The electric cur-
rent density j is perpendicular to the temperature gradient
and the magnetic field direction. We have omitted terms
associated with the magnetic viscosity and hydrodynamic
motions in the plasma, which is unimportant for further
consideration. In the most common case of an inhomoge-
neous plasma, where the gradients of the plasma density
and temperature are parallel (e.g., in installations for mag-
netic plasma confinement), the above mechanism of spon-
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taneous magnetic field excitation does not possibly work,
but another mechanism, which we will discuss below, is
possible. The rate of an increase in the magnetic field in
this case may be substantially lower than in the case of
non-co linearity, but the magnetic field saturates at a much
higher level. We assume that the plasma is in the state
when the plasma pressure is independent of the coordi-
nates. After simple transformations, Eq. (1) together with
expression (2) for the “thermal force” [10] can be repre-
sented in the form (quadratic fluctuations δT · B are ne-
glected, as usual):

∂B
∂t
= ψ(x)B + ϕ(x)

∂B
∂x
, (3)

Equation (3) is the same for both y- and z-component of the
magnetic field, B = By, Bz; ψ(x) and ϕ(x) are the functions
of the electron temperature and gradients of the plasma
density and temperature

ψ(x) =
0.8
m

[∇xτe · ∇xTe + τe · ∇2
xTe] (4)

ϕ(x) =
0.8
m
τe · ∇xTe (5)

As we see, Eq. (3) is a linear partial differential equa-
tion where the coefficients at B and its derivative are the
functions of the x-coordinate. It follows from Eq. (3) that
the instability is convective in nature. To solve this equa-
tion, the semi classical approximation is inapplicable, be-
cause the dimensions of the inhomogeneties of the mag-
netic field and plasma are comparable. Therefore, we will
use the following obvious way. We will represent the mag-
netic field variation over time in the form

B(t, x) = B(0, x) exp γt, (6)

where the “increment” γ is a function of the coordinates,
γ = γ(x). After substituting expression (6) in Eq. (3), we
obtain for the instability increment

γ(x) = ψ(x) + ϕ(x)
1

B(0, x)
∂B
∂x

(0, x), (7)

where B(0, x) is the initial condition, B(0, x) = B(t, x) at
t = 0. As seen from Eq. (7), the rate of the increase in
the magnetic field depends on the coordinates, which is a
result of a “drift” of the magnetic field. Note that the mag-
netic field, depending on the geometry of the problem, may
change the sign at point x = 0 passing through the yz plane.

Note. The first term in the right-hand side of Eq. (1) describes
the excitation of a spontaneous magnetic field due to non-co linear-
ity of the plasma density and temperature gradients [2–8]; in this case,
the increase in the magnetic field for the estimates can be expressed as
dB/dt ≈ 6 · 1019T f /a2 G/s, where f is the sine of the angle between
the directions of the density and temperature gradients, a is the spatial
scale of inhomogeneties (in cm), and T is the plasma temperature (in
CGS units). As seen from the above formula, the spontaneous magnetic
field increases at a high rate, and during the laser pulse ∼1-10 ns reaches
its maximum. In compressed spherical targets, where the electron den-
sity reaches a value of n ∼ 1027 cm−3 and higher, the magnetic field at
ωτe ∼ 1 may exceed the value of B > 100 MG [8].

It follows from Eq. (6) that the initial magnetic field will
increase (or decrease) with time, depending on the sign of
ψ(x) and ϕ(x), i.e., on the signs of the gradients τe and Te.
In this case, the first term in the right-hand side of Eq. (4)
under conditions of a neomagnetic confinement [11], when
the sum of total plasma pressure and magnetic field is pre-
served, is always positive; at the same time, the sign of the
second term depends on the sign of the heat source Q(x,T )
and the behavior of the temperature dependence of thermal
conductivity. In Coulomb collisions, γ > 0 in the case of
the heat source Q(x,T ) < 0. Thus, in a high-temperature
plasma, the instability develops primarily in the tempera-
ture region where the bulk energy loss exceeds the heat re-
lease (for example, exceeds the energy effect of nuclear fu-
sion reactions). It follows from Eq. (3), the magnetic field
“drifts” from this region to the region of higher tempera-
tures. Assuming that Q < 0 (bremsstrahlung losses domi-
nate), we give approximate expressions to estimate the rate
of the increase in the magnetic field. For the increment γ,
we have

γ ∼ v2
eτe/a

2 (8)

where a is the characteristic size of the plasma and ve-
electron thermal velocity.

Let us present the estimates with respect to the laser
plasma. Assuming the plasma temperature to be ∼10 keV,
the plasma density to be n ∼ 1021 cm−3 we obtain γ ∼
109 s−1 for a ∼ 1 cm. This means that the magnetic field
rapidly increases and the electronic ωτe ∼ 1 is achieved in
a fairly short time. Then, when ωτe > 1 the exponential
instability is replaced by a linear increase with time

dB2/dt ∼ mc2/e2(qve/a
2)nT ∼ 1020 G2s−1 (9)

for the plasma parameters mentioned above and a ∼
10−2 cm where q is the cross section for Coulomb scat-
tering. This means that to obtain a field of the order of
∼1 MG we need a fairly short time (t ∼ 10−8 s). It follows
from the formula (9) the rate in the increasing magnetic
field depends on plasma pressure.

After the magnetic field reaches its maximum value,
this field will be self-sustaining. Assuming that the plasma
parameters do not vary with time, we consider this phe-
nomenon by the example of toroidal plasma geometry. We
assume that the external magnetic fields are absent. The
spontaneous magnetic field is sustained by thermal diffu-
sion currents flowing perpendicular to the gradient of the
temperature and magnetic field. To solve the problem, we
use the corresponding equation for thermal diffusion cur-
rents from [10] (Eq. (6.30), p. 240)

∇ ×
(

3
2

c
e

1
ωτ

h × ∇T − c
j
σ⊥

)
= 0, (10)

where j is the current density, which includes the toroidal
jT and poloidal jP components, and σ⊥ is the trans-
verse conductivity of the plasma. It is worth noting

1301002-2



Plasma and Fusion Research: Letters Volume 7, 1301002 (2012)

that the results of calculations by the Chapman – Enskog
method [10], the Grad method [12, 13] and in the kinetic
consideration within the framework of the Lorentz approx-
imation [14] of thermal diffusion coefficients (in our case,
the value of the coefficient 3/2 and the sign in Eq. (10)),
which are important for self-sustaining the magnetic field,
completely coincide. After integrating Eq. (10) in r and
taking into account Maxwell’s equation

∇ × B =
4π
c

j, (11)

we obtain for toroidal BT and poloidal BP components of
magnetic field

3
2

c
e

1
ωτ

dT
dr
+

c
4πσ

1
r

d
dr

(rBP) = 0, (12)

where ω = eBP/mc

3
2

c
e

1
ωτ

dT
dr
+

c
4πσ

d
dr

BT = 0, (13)

where ω = eBT/mc
Further, assuming the plasma equilibrium [15]

∇p +
1

4πr
Bp

d
dr

rBp +
1

4π
BT

d
dr

BT = 0 (14)

from Eq. (12), (13) and (14) we find

p = p0(T/T0)k, (15)

where p = ne(Te + Ti) is the total plasma pressure, p0 is
its value at r = 0 and ne is the density of electrons (ions).
In the plasma layer adjacent to the plasma edge (and at
a low toroidicity, a � R, where a and R are small and
large radii of the torus), we can neglect the curvature of
magnetic field lines; in this case, for the poloidal magnetic
field component we obtain the relation

B2
P/8π ≈ p0[1 − (T/T0)k] (16)

For the toroidal component we obtain a similar equation,
which however remains valid for the whole cross sec-
tion of the plasma. The power k in Eq. (15) – (16) de-
pends on the ratio between the electron and ion tempera-
tures. When Te = Ti, we have k = 3/2. Thus, in this
case when the temperature decreases, the plasma pressure
drops and the magnetic field increases, reaching the values
such that the magnetic field pressure at the plasma edge
T → 0 becomes comparable with the plasma pressure at
T = T0. For example, in laser plasma at density of elec-
trons n ∼ 1021 cm−3 and temperature T ∼ 10 keV we have
the estimate B ∼ 30 MG. At the same time in the com-
pressed plasma when plasma density can reach values of
about 1026 cm−3 we could have a field of ∼106 T (!).

At temperatures close to the maximum value, the mag-
netic field is weak and the plasma pressure exceeds the
pressure of magnetic field, β = 8πp/B2 � 1. At low tem-
peratures T ∼ 10-100 eV, the confinement of plasma by the

magnetic field is disturbed and the plasma equilibrium is
reduced to the fact that the total pressure of the plasma and
neutral gas becomes equal to the pressure of the plasma in
the center [11, 16]. In this case, the density of the “cold”
plasma (and neutral gas) towards its periphery rapidly in-
creases with decreasing temperature. Thus, at a temper-
ature T ∼ 1000 K, the density of neutral particles near
the surface will reach the value of N ∼ 1019 cm−3, if the
plasma density in the center is ∼1014 cm−3 at T ∼ 10 keV.
In the deuterium plasma, the temperature is higher and,
therefore, the protective layer of neutral particles will be
denser. In addition, the density of neutral particles will in-
crease with increasing plasma density in the center. Thus,
when the plasma density on the axis is ∼1015 cm−3, we
have N ∼ 1020 cm−3, which corresponds to a pressure of
about 10 bar. For a sufficiently large area occupied by the
cold plasma and neutral gas with a high density of parti-
cles, fast charged particles cannot reach the walls without
a complete loss of energy.

Consider a poloidal magnetic field in the vicinity of
r ∼ 0, where the field is minimal and vanishes at r = 0.
Given that B → 0 at r → 0, the ratio B/r can be replaced
by the derivative dB/dr and the equation of plasma equilib-
rium can 8π be transformed; as a result, we find the local
relation between the magnetic field and plasma tempera-
ture

B2
P/8π ≈

1
2

p0[1 − (T/T0)k] (17)

Thus, the relation for the magnetic field strength with the
temperature near the major axis of the torus is defined by a
similar relation (16), but the magnetic field strength in this
case is twice lower. The relation between the plasma pres-
sure and temperature is similar to the previously obtained
Eq. (15). The self-sustaining magnetic field increases to-
wards the plasma periphery; therefore, the minimum B
takes place in the center of the plasma column.

We have considered the emergence of the instability
of spatially inhomogeneous plasma with respect to the ex-
citation of the magnetic field. The rate of the increase in
the field is sufficient for the magnetic field to reach, in a
fairly short time, such values when its pressure becomes
comparable with the plasma pressure. In the steady-state
or quasi-stationary plasma, self-sustaining of the magnetic
field is possible when the magnetic field strength and its
spatial dependence are determined by the dependence of
plasma parameters on the spatial coordinates.

Author thanks the participants in the seminars led
by V.D. Shafranov and L.M. Kovrijnikh for helpful com-
ments.
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