
Plasma and Fusion Research: Regular Articles Volume 6, 2406051 (2011)

Development of Portal Web Pages for the LHD Experiment∗)

Masahiko EMOTO, Hisamichi FUNABA, Hideya NAKANISHI, Chie IWATA,
Masanori YOSHIDA and Yoshio NAGAYAMA

National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan

(Received 8 December 2010 / Accepted 25 February 2011)

Because the LHD project has been operating with the cooperation of many institutes in Japan, the remote
participation facilities play an important role. Therefore, NIFS has been introducing these facilities to its remote
participants. Because the authors regard Web services as essential tools for the current Internet communication,
Web services for remote participation have been developed. However, because these services are dispersed among
several servers in NIFS, users cannot find the required services easily. Therefore, the authors developed a portal
Web server to list the existing and new Web services for the LHD experiment. The server provides services such
as summary graph, plasma movie of the last plasma discharge, daily experiment logs, and daily experimental
schedules. One of the most important information from these services is the summary graph. Usually, the plasma
discharges of the LHD experiment are executed every three minutes. Between the discharges, the summary
graph of the last plasma discharge is displayed on the front screen in the control room soon after the discharge is
complete. The graph is useful in evaluating the last discharge, which is important information for determining the
subsequent experiment schedule. Therefore, it is required to display the summary graph, which plots more than
10 data diagnostics, as soon as possible. On the other hand, the data-appearance time varies from one diagnostic
to another. To display the graph faster, the new system retrieves the data asynchronously; several data retrieval
processes work simultaneously, and the system plots the data all at once.
c© 2011 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: remote participation, portal, web, AJAX, Ruby on Rails

DOI: 10.1585/pfr.6.2406051

1. Introduction
Because of the growth in the scale of nuclear-fusion

experiments, collaboration between different organizations
has become necessary, and remote participation has been
adopted for various projects [1, 2]. The LHD project has
been operating with the cooperation of many institutes in
Japan. NIFS has also been introducing remote participa-
tion facilities to its remote participants [3]. Because the
authors regard Web services as essential tools for the cur-
rent Internet communication, Web services for remote par-
ticipation have been developed. For example, a user can
use his Web browser to modify diagnostic parameters, vi-
sualize the acquired data, and search for other information
such as the schedule or the configuration of the experiment.
However, as the number of Web servers has increased, it
has become difficult, especially for visitors, to find the nec-
essary information. To improve this situation, a portal Web
server that guides the user in retrieving the necessary infor-
mation is required. There are several portal Web pages for
nuclear-fusion experiments; for example, for the DIII-D
project, General Atomic provides a portal page [4]. This
page uses Web 2.0 technology to enable the user to create
customizable interfaces.

author’s e-mail: emoto.masahiko@nifs.ac.jp
∗) This article is based on the presentation at the 20th International Toki
Conference (ITC20).

The basic requirement of the portal page for remote
participants is a collection of the links to useful services.
However, it is also important to provide basic information
without requiring visits to other Web pages, such as the
summary of the experiments currently underway and emer-
gency messages. Therefore, the portal page must be inter-
active and must automatically update its contents, depend-
ing on the status of the experiment. The Asynchronous
JavaScript + XML (AJAX) technique is popular for devel-
oping such Web pages. However, it is rather difficult to
build an AJAX application, because the programmer has
to develop applications whose GUI dynamically changes.
Furthermore, the programmer has to use different com-
puter languages simultaneously: JavaScript for the client
side, and other languages such as Perl or PHP, for the
server side. Ruby on Rails (RoR) [5] is widely used to
efficiently develop AJAX applications. RoR provides the
Model View Controller architecture. Therefore, it is sim-
pler for the programmer to develop dynamic GUIs, be-
cause of the separated logic and GUI components. Fur-
thermore, because RoR encapsulates JavaScript and SQL,
the programmer can develop an AJAX application by using
Ruby alone. Because the authors have realized the utility
of RoR through the experience of developing several Web
applications such as data viewer and experimental sched-
uler, the author chose RoR to develop the portal Web page.

c© 2011 The Japan Society of Plasma
Science and Nuclear Fusion Research

2406051-1



Plasma and Fusion Research: Regular Articles Volume 6, 2406051 (2011)

Fig. 1 Portal Web page of the LHD project.

2. System Overview
Figure 1 shows the LHD portal Web page. The page

consists of 13 frames, each of which is an independent
RoR application. Therefore, the modification of one frame
does not affect the other frames, which makes it easy to
develop a single component. Furthermore, this structure
makes it easy to customize windows by choosing the nec-
essary functions.

The calendar in the top left corner is linked to the ex-
perimental scheduler. The user can view the schedule and
submit experiment proposals from here. To edit a sched-
ule, the user has to log into the system, else, the applica-
tions will operate in guest mode and only read-only access
will be available to the user.

The following frames display the summary informa-
tion of the last plasma discharge, including a plasma video,
an NBI current graph, and a summary graph. The plasma
video image is recorded by a camera attached to the LHD
vacuum vessel [6]. It is converted to MPEG format by
personal computers. The daemon program running on the
file server periodically checks if new MPEG files exist in a
shared folder. If it finds new MPEG files, it converts them
into Adobe Flash format files because the size of MPEG
files is too large to transfer to many users via a 100 Mbps
network. The size of the converted file becomes about
one-fifth of the original size. The NBI current graph is

used to determine whether NBI is injected. This image is
a screen dump of the PC that monitors the NBI signals and
is saved into the shared folder of the file server. The sum-
mary graph plots the important values of the last plasma
discharge. The summary graph is a PV-Wave application
and a part of the Information Display System for Plasma
Operation. The graph is displayed on the front screen of
the control room in real time. After completing the graph,
it sends PostScript data to the file server. When the server
program receives the PostScript file, the program converts
it into a PDF file and a PNG file. The flow of data used by
the Web portal is shown in Fig. 2.

In the middle column (Fig. 1), there is a daily log of
the experiments. In the top area, it displays user comments.
Every user can enter comments to notify the participants
of important information. At the bottom, there is the sum-
mary information of each plasma discharge.

The right column displays information on the follow-
ing plasma discharges; in the middle area, there is a shot
calculator, which is an application that estimates the time
corresponding to the shot number, or vice versa; it is ben-
eficial to know the number of discharge experiments that
can be performed within the assigned time.

The Web contents are updated as the experimental se-
quence progresses. To notify the computers of the experi-
mental sequence, IP multicast packets are broadcast in the

2406051-2



Plasma and Fusion Research: Regular Articles Volume 6, 2406051 (2011)

Fig. 2 Data flow of the portal page.

local network. The packets are sent when the sequence sta-
tus or experimental number changes. When the server pro-
gram receives the IP multicast packet, it updates the con-
tents.

3. Shot Summary Graph
One of the most important pieces of data displayed

in the portal page is the summary graph, which is useful
in obtaining the results of the previous experiment while
conducting an experiment. The LHD plasma discharge ex-
periments are typically executed every three minutes. The
scientists configure the diagnostic parameters and experi-
mental conditions between the discharges.

Most of the raw signal data of the LHD experiment
is managed by the LABCOM system [7], and the physical
data is managed by the Kaiseki server system [8]. The
LABCOM system is not only a data acquisition system,
but also a data archive system that handles data acquired
by various systems including the LABCOM system. To
retrieve the data from the LABCOM system, the system
provides a Retrieve command and an API library. Similar
to the LABCOM system, the Kaiseki server provides the
unified interface and data format of various physical data.
Therefore, by using these commands or the API for each
system, the user can use only a few interfaces to read the
data acquired by various systems.

However, the LABCOM system did not support the
necessary diagnostic data to be monitored when the LHD
project started, and the Kaiseki server was not available at
the time. On the other hand, the summary graph applica-
tion was urgently needed, and it was developed to retrieve
data from heterogeneous data acquisition systems. To re-
ceive the data from various systems, the program uses the
folder sharing function of Microsoft Windows. Each ac-
quisition system writes the data into the shared folder, and
the application reads it if it is available. The application
checks all the data one by one. The higher priority data
such as plasma stored energy or electron density are read
to be plotted soon after they are available. However, the

Fig. 3 Lastshot.py: the summary graph application written in
Python.

Fig. 4 Parallel/Asynchronous read: The application runs multi-
ple processes to read four diagnostics at once. Each pro-
cess sleeps until the data is available.

lower priority data is not read until its turn comes, even
if it is available. Therefore, there is a delay in plotting
the lower priority data. The interval between plasma dis-
charges is about three minutes, but it is not enough time
to evaluate the data, because it takes time to transfer the
acquired data from the digitizers to the server. Therefore,
this delay must be as short as possible.

To minimize the delay, the new application Last-
shot.py has been developed (Fig. 3). Lastshot.py is writ-
ten in Python, which is an object-oriented script language
that has characteristics similar to Ruby. The main reason
for choosing Python is that it has various scientific mod-
ules, such as matplotlib and pylab, to handle the experi-
ment data easily. The new application uses two techniques
to minimize the delay (Fig. 4). The first one is simultane-
ous read; Lastshot.py retrieves all of the experimental data
simultaneously instead of sequentially; when the new ex-
perimental sequence begins, the application runs multiple
child processes to retrieve the data; the parent process re-
ceives the data on a first-come, first-serve basis, and plots
the data without delay.

The second technique is asynchronous read. Last-
shot.py obtains the data from the LABCOM system and the

2406051-3



Plasma and Fusion Research: Regular Articles Volume 6, 2406051 (2011)

Kaiseki server system. To read the LABCOM data asyn-
chronously, it uses the wait function of the Retrieve API.
The retrieval process is locked until the data are available.
When the data is available, the process is unlocked and
reads the data soon. On the other hand, to read the data
of the Kaiseki server system, it uses IP multicast notifica-
tion. When the new data is registered in the Kaiseki server,
the server sends an IP multicast to notify the clients of the
registration. The child process sleeps until the notification
arrives and reads the Kaiseki data soon after it receives the
packet.

Using these techniques, Lastshot.py can plot the data
without significant delay.

4. Summary and Future Plan
Using RoR technology, a real-time portal Web page

for the LHD project was developed. It has been helping
users to participate in the entire last season of four months
of the LHD experiment, and the number of accesses to the
portal page has doubled in this season. When visiting this
page, the user does not bother to use various tools to obtain
the necessary information. The authors believe that this
page is useful and that it will promote remote participation.

During the experiment, in response to the user’s re-

quests, the application has been modified and some new
features have been added. However, because of RoR, it
was not necessary to stop the service to maintain the soft-
ware. This could prove the utility of RoR.

The portal page has been improved to provide a better
environment for the remote participants. For example, the
improvement of the shot summary-graph application will
reduce the delay time, which will enable the participants
to use their time more efficiently.

Acknowledgment
This work was supported by a budget

NIFS10ULHH014 of the National Institute for Fu-
sion Science. The authors are grateful to all the staffs of
the LHD project.

[1] G. Abla et al., Fusion Eng. Des. 83, 480 (2008).
[2] D.P. Schissel, Fusion Eng. Des. 83, 539 (2008).
[3] M. Emoto et al., Fusion Sci. Technol. 58, 458 (2010).
[4] G. Abla, E.N. Kim, D.P. Schissel and S.M. Flangan, Fusion

Eng. Des. 85, 603 (2010).
[5] http://www.rubyonrails.org/
[6] M. Shoji et al., Plasma Fusion Res. 2, S1046 (2007).
[7] H. Nakanishi et al., Fusion Eng. Des. 82, 1203 (2007).
[8] M. Emoto et al., Fusion Eng. Des. 81, 2019 (2006).

2406051-4


