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Simulation Study of ECCD in Helical Plasmas∗)
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The electron cyclotron current drive (ECCD) is studied in Heliotron J and LHD plasmas using GNET code
in order to study the ECCD physics in helical configurations. The magnetic configuration dependence of ECCD
is investigated in the Heliotron J plasma. It is found that the current direction is reversed in high bumpiness
configuration compared with the other configurations. The ECCD in LHD is also investigated by changing
electron cyclotron heating points fixing the configuration. It is found that the direction of the current reverses
when we change the heating point from the ripple top to the ripple bottom.
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1. Introduction
Electron Cyclotron Current Drive (ECCD) is one of

the reliable methods to drive a plasma current by inject-
ing the electron cyclotron wave. The electron cyclotron
wave has the GHz range of frequency and the wave ab-
sorption position can be controlled locally by changing the
magnetic field strength. Consequently, ECCD can control
current profile locally and has been applied for toroidal de-
vices to keep the current profile, to stabilize MHD instabil-
ities and to cancel the bootstrap current in helical systems.

There are two well known ECCD mechanisms,
namely the Fisch-Boozer effect and the Ohkawa effect
[1, 2]. These effects drive the current of opposite direc-
tions. The Fisch-Boozer effect assumes the case where the
perpendicular velocity direction shift of electrons with fi-
nite positive v‖ is caused by ECH in velocity space. Asym-
metry is generated by this shift in velocity space and it re-
laxes to Maxwell distribution through the collisional pro-
cess. Here, collision frequency of energetic electron de-
creases in proportional to v−3, where v is the electron veloc-
ity. So the collisional relaxation of high energy electrons
is slower than that of low energy electrons. This difference
of the relaxation time causes an excess of electrons moving
with positive v‖. Therefore the negative toroidal current is
driven by ECH. This current drive mechanism is called the
Fisch-Boozer effect.

The Ohkawa effect occurs in a toroidal configuration,
where a trapped particle exists by the toroidal mirror field.
If the electrons accelerated by ECH are shifted from the
passing particle region to the trapped particle region, the
asymmetry in the v‖ direction of these electrons is lost
rapidly because of the bounce motion of the trapped elec-
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trons. The bounce motion symmetrizes the distribution in
velocity space more rapidly than the collisional ones and
the asymmetry due to the deficit of electrons in the low en-
ergy region remains. So the excess of electron deficit with
v‖ drives the positive toroidal current. This mechanism is
called the Ohkawa effect.

In order to study the ECCD physics, a number of
ECCD experiments have been performed in many devices
[3]. Especially in Heliotron J, which is the helical-axis he-
liotron device, EC currents were measured experimentally
and ECCD dependence on the magnetic configuration and
the density were obtained [4, 5]. It was found that the EC
current decreased as electron density was increased and
that the current changed depending on magnetic configu-
rations. Moreover, it was observed that the direction of the
EC current was reversed in high bumpiness configuration
compared with the other magnetic configurations. In LHD,
in order to investigate the characteristics of EC driven cur-
rent and to make clear the possibility of controlling the cur-
rent and rotational transform profiles, ECCD experiments
have been performed [6].

While the experimental analyses of ECCD have been
carried out in the number of helical devices as mentioned
above, the theoretical analyses of these experiments have
not been done sufficiently. In this study, we simulate the
current drive on helical plasmas by GNET code in order
to make clear the ECCD physics. GNET has been devel-
oped for transport study of high energy electrons in helical
systems, and has been applied to ECCD analysis in heli-
cal systems. The objective of this study is to make it clear
the effect of trapped electrons on ECCD. The EC driven
currents are evaluated changing the magnetic configuration
and the heating points in Heliotron J and LHD.
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2. Simulation Model
GNET code can solve the linearized drift kinetic equa-

tion as a (time-dependent) initial value problem based on
the Monte Carlo technique (in 5-D phase space) [7]. A
technique similar to the adjoint equation for dynamic lin-
earized problems is used and the linearized drift kinetic
equation for the deviation from the Maxwellian back-
ground, δ f , is solved. We can obtain the steady state
solution of the distribution function by GNET. In helical
system the motion of trapped particles becomes compli-
cated because of the complex 3-D magnetic configuration.
Therefore, in order to analyze ECH in detail on helical
systems, we have to take account of the radial diffusion
of trapped particles. And, to do so, we must consider the
distribution function at least in 5-D phase space. We can
analyze ECCD in detail on complex helical configurations
by GNET.

In GNET the gyrophase averaged electron distribution
function is described as

f (x, v‖, v⊥, t) = fMax(r, v2) + δ f (x, v‖, v⊥, t), (1)

where fMax(r, v2) represents a Maxwellian depending on
the effective radius r. The linearized drift kinetic equation
can be written with the initial condition δ f (x, v‖, v⊥, t =
0) = 0 as

∂δ f
∂t
+ (ud + u‖) · ∂δ f

∂x
+ u̇ · ∂δ f

∂u

= Ccoll(δ f ) + Lorbit(δ f ) + S ql( fMax), (2)

where ud is the drift velocity and u‖(= v‖ b̂) is the parallel
velocity. The acceleration term u̇ = u̇‖ + u̇⊥ is given by the
conservation of magnetic moment and total energy. Ccoll

and Lorbit are the linearized collision operator and the par-
ticle loss term, respectively. S ql represents the quasilinear
source term.

It is convenient to introduce the Green’s function
G(x, v‖, v⊥, t|x′, v′‖, v′⊥) , which is defined by the homoge-
neous Fokker-Planck equation corresponding to Eq. (2), as

∂G
∂t
+ (ud + u‖) · ∂G

∂x
+ u̇ · ∂G

∂u

−Ccoll(G) − Lorbit(G) = 0, (3)

where the initial condition is G(x, u, t = 0|x′, u′) = δ(x −
x′)δ(u − u′). An electron starting at the time t = 0 at the
position x′ with the velocity u′ will be found with the prob-
ability

G(x, u, t|x′, u′)dxdu, (4)

at the time t in the phase space volume element dxdu cen-
tered at x, u. The solution for δ f is given by the convolution
of S ql with G,

δ f (x, u, t) =
∫ t

0
dt′

∫
dx′

∫
du′

× S ql[ fMax(r′, v′2)]G(x, u, t − t′|x′, u′). (5)

Therefore, if this Green’s function is obtained, the solution
of Eq. (2) is also derived from Eq. (5) and we can obtain the
steady state distribution function of high energy electrons.

We follow the test particle orbits to evaluate the Green
function in Boozer coordinates on the bases of a 3D MHD
equilibrium. A 6th-order Runge-Kutta-Huta method is ap-
plied to integrate the equation of motion using the mag-
netic field data. The collisional effects (both pitch angle
and energy scattering) are taken into account using the lin-
ear Monte Carlo collision operator. The particle collision
by the s-species (electron and ions) is given by

Ccoll
s (δ f ) =

1
v2
∂

∂v

[
v2ν2E

(
vδ f +

Ts

m
∂δ f
∂v

)]

+
νs

d

2
∂

∂λ
(1 − λ2)

∂δ f
∂λ
, (6)

where λ = v‖/v, and ν2E and νs
d are the energy transfer rate

and the deflection collision frequency by a background of
s-species particles, respectively. The model developed by
Boozer and Kuo-Petravic [8] is applied in the simulation
evaluating the Green function.

S ql represents the change in velocity space caused by
ECH. Because we assume a quasilinear heating term, the
multi-interaction with EC waves is not taken into account.
Thus the resonant interaction is not considered in solving
Eq. (3) that is important in the ICRF heating.

We assume S ql = S +−S −, where S + (the source term)
and S − (the sink term) are the increase and decrease of
the distribution function, respectively. Because ECH shifts
the velocity of electrons in the perpendicular direction, we
assume S + and S − as

S +=
S 0

2πv⊥
δ(ρ − ρ0)δ(θ − θ0)δ(φ − φ0)

×δ(v‖ − α‖vth)δ(v⊥ − α+vth), (7)

S −=
S 0

2πv⊥
δ(ρ − ρ0)δ(θ − θ0)δ(φ − φ0)

×δ(v‖ − α‖vth)δ(v⊥ − α−vth), (8)

where ρ = r/a is normalized radial position, θ and φ cor-
respond to poloidal and toroidal angles, respectively. Sub-
script 0 of ρ0, φ0 and θ0 means a heating position. vth corre-
sponds to thermal velocity of electron, and α‖vth and α±vth
are respectively the parallel and perpendicular velocity of
the heated electrons. The amplitude S 0 of each terms de-
pends on ECH heating power PECH. Using E±, electron
energy before and after heating, PECH is given by

PECH =

∫
{S +(x, u)E+(u) − S −(x, u)E−(u)} dxdu

=

∫ {
S +(x, v‖, v⊥)E+(v‖, v⊥)

−S −(x, v‖, v⊥)E−(v‖, v⊥)
}
2πv⊥dxdv‖dv⊥

= S 0E+(α‖vth, α+vth) − S 0E−(α‖vth, α−vth).

E± are described as E±(α‖vth, α±vth) = Eth ·(α2
‖+α

2±), where
Eth is electron energy moving with vth. Therefore, PECH is
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denoted as

PECH = S 0Eth · (α2
+ − α2

−), (9)

and so S 0 is given by

S 0 =
PECH

Eth · (α2
+ − α2−)

. (10)

Eqs. (7) and (8) represent the increase and decrease of dis-
tribution function as a δ function. We assume a very simple
model as a first step.

3. Simulation Result
3.1 Result of Heliotron J simulation

Various magnetic configurations are capable in He-
liotron J device by changing the ratio of coil currents. Here
we consider bumpiness εb, which is the parameter charac-
terizing magnetic configurations given by

εb = B04/B00, (11)

where Bmn represents the Fourier component of the mag-
netic field strength in Boozer coordinates, and m and n are
the poloidal and toroidal mode numbers, respectively. In
this study we assume three configurations, namely εb =

0.01 (low bumpiness), εb = 0.06 (medium bumpiness) and
εb = 0.15 (high bumpiness) at ρ = 0.67. The distribu-
tion of the magnetic field strength along the magnetic axis
in these bumpiness are shown in Fig. 1. From this figure,
EC power is deposited at the top of the magnetic ripple in
the low bumpiness (εb = 0.01). On the other hand, EC
power is deposited at the bottom of the ripple in the high
bumpiness (εb = 0.15). εb = 0.06 is the standard magnetic
configuration.

We estimate the dependence of EC current on mag-
netic configurations in the three configurations. We as-
sume the heating point of the source and sink terms as
ρ0 = 0.1, θ0 = 0◦ and φ0 = 45◦ and the heating param-
eters as α‖ = 1.0, α+ = 2.5, α− = 1.5 and PECH = 350 kW

Fig. 1 The distribution of the magnetic field strength along the
magnetic axis. EC wave is absorbed at φ = 45◦.

according to the heating condition on the experiments in
Heliotron J. The obtained distribution functions by GNET
in the low bumpiness and high bumpiness cases are shown
in Fig. 2. The increase and decrease from Maxwellian are
colored with red and blue, respectively.

In the low bumpiness case (Fig. 2 (a)), it is considered
that ECH accelerated electrons are hardly trapped. The
collisional relaxation of the electron deficit in low energy
region is faster than that of the accelerated electrons. This
results in the excess of electrons with positive v‖ and so the
negative toroidal current is driven. Consequently, we can
see that the current is driven by the Fisch-Boozer effect.

In the high bumpiness case (Fig. 2 (b)), since the
EC wave is absorbed at the bottom of the magnetic rip-
ple, many accelerated electrons become trapped electrons.
From Fig. 2 (b) it is found that the distribution of the high
energy region becomes symmetric rapidly while the distri-
bution of the low energy region becomes symmetric slowly
by the collisional relaxation. As a result, the excess of low
energy electron deficit with v‖ is caused by ECH. Therefore
it is found that the positive toroidal current is driven by the
Ohkawa effect.

EC current can be calculated by integrating the distri-
bution function on velocity space. We estimate the EC cur-
rent in three configuration cases. The obtained EC current
are summarized in Fig. 3. It is found that the negative cur-
rents are driven in εb = 0.01 and εb = 0.06, on the other
hand, the positive current is driven in εb = 0.15. So the
current direction is reversed between the high bumpiness
and the other configuration cases. I+, the current driven by

Fig. 2 The results in Heliotron J simulations. Flux averaged dis-
tribution functions of (a) εb = 0.01 and (b) εb = 0.15
are plotted in velocity space. The increase (δ f+) and
decrease (δ f−) from Maxwellian are colored with red
and blue, respectively. These results are calculated in
ne = 0.50 × 1019 m−3, Te = 1 keV, where ne is electron
density and Te is electron temperature.
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Fig. 3 The ECCD dependence on magnetic configurations in
Heliotron J. The simulation results on three configura-
tions are plotted. Itotal is calculated from total distribu-
tion function. I+ and I− are calculated from δ f+ and
δ f−. These current values are the results in ne = 0.50 ×
1019 m−3, Te = 1 keV.

the excess of high energy electrons with +v‖ becomes large
in the low and medium bunmpiness. In the high bumpiness
case, by contrast, asymmetry of high energy electron is lost
due to bounce motion and I+ becomes nearly zero. There-
fore the remaining deficit of low energy electrons mainly
contributes to current drive. So the current is driven mainly
by the Fisch-Boozer effect in εb = 0.01 and εb = 0.06
configurations. On the other hand, the Ohkawa effect ex-
ceeds the Fisch-Boozer effect and so the current direction
reverses in εb = 0.15 configuration. The obtained magnetic
configuration dependences by GNET simulations qualita-
tively agree with the experimental ones.

3.2 Result of LHD simulation
In the LHD case, we estimate the EC current changing

the ECH heating points. The variation of the magnetic field
strength along the toroidal and poloidal directions becomes
large on flux surface ρ ∼ 0.6 in the LHD configuration.
Here, the magnetic field strength along the poloidal angle
θ at the toroidal angle φ = 0◦ (vertically elongated cross
section) is shown in Fig. 4. We expect that when the EC
wave is absorbed at θ0 = 90◦ or the ripple bottom, many
trapped electrons are generated, but in the case where the
EC power is deposited at θ0 = 180◦ or the ripple top, accel-
erated electrons are scarcely trapped. Based on this expec-
tation, we simulate ECCD by changing θ0 from 0◦ to 180◦,
assuming EC wave is absorbed at (ρ0, φ0) = (0.6, 0◦). The
other parameters of the source and sink terms are assumed
as α‖ = 1.0, α+ = 2.5, α− = 1.5 and PECH = 1000 kW.

Figure 5 shows the simulation results of three heat-
ing points. In the case of (ρ0, φ0, θ0) = (0.6, 0◦, 0◦) and
(0.6,0◦, 90◦) (Fig. 5 (a), (b)), the asymmetry in the high
energy region is lost due to the effect of the bounce mo-
tion. Consequently, the positive toroidal current is driven
by the asymmetry in the low energy electrons. On the
other hand, trapped electrons are scarcely generated in the

Fig. 4 The dependence of the magnetic field strength on the
poloidal angle θ. ρ and φ are fixed 0.6 and 0◦.

Fig. 5 The results in LHD simulations. Flux averaged distri-
bution function of (a) θ0 = 0◦, (b) θ0 = 90◦ and (c)
θ0 = 180◦ are plotted in velocity space. The increase
(δ f+) and decrease (δ f−) from Maxwellian are colored
with red and blue, respectively. These results are calcu-
lated in ne = 2.0 × 1019 m−3, Te = 1.5 keV.

case of (ρ0, φ0, θ0) = (0.6, 0◦, 180◦) (Fig. 5 (c)). Thus the
v‖ asymmetry in the high energy region remains and the
negative toroidal current is driven.

We evaluated the EC current from the distribution
functions and investigated the ECCD dependence on ECH
heating points. This dependence is summarized in Fig. 6.
It is found that the current is driven mainly by the Fisch-
Boozer effect in the ripple top heating case (135◦ < θ0 <
180◦), while the Ohkawa effect exceeds the Fisch-Boozer
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Fig. 6 The ECCD dependence on ECH heating points. These
results are calculated in ne = 2.0×1019 m−3, Te = 1.5 keV.
Itotal is calculated from total distribution function. I+ and
I− are calculated from δ f+ and δ f−.

effect in the ripple bottom heating case (0◦ < θ0 < 135◦).

4. Conclusion
In order to study the ECCD physics on helical plas-

mas, we have simulated the current drive of ECH plasmas
in Heliotron J and LHD by GNET. In the Heliotron J case,
we have analyzed ECCD assuming three magnetic config-
urations similar to the experimental ones. Simulation re-

sults have shown that the direction of EC current was re-
versed in the high bumpiness configuration compared with
the low and medium bumpiness configurations. We found
that EC current changed depending on magnetic configura-
tions and obtained current direction was determined by the
balance between the Fisch-Boozer effect and the Ohkawa
effect. In the LHD case, we have simulated ECCD by
changing ECH heating points in the poloidal direction. It
was found that the direction of EC current reversed be-
tween ripple top heating and ripple bottom heating.
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