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The effects of anisotropic pressure on MHD equilibrium are investigated, particularly focused on the position
of the magnetic axis. MHD equilibria are numerically calculated under anisotropic pressure conditions using an
extension of the VMEC code which is widely applied to obtain three dimensional MHD equilibria. This code is
called ANIMEC. A bi-Maxwellian model was invoked in this code in order to treat anisotropic pressure driven by
energetic particles without any inconsistency. To investigate the properties of the plasma with p‖ > p⊥, numerical
computations under various conditions are performed with a LHD magnetic configuration using the ANIMEC
code. Comparisons of the plasma behavior between an analytical model that considers p‖ and p⊥ to be constant
on each flux surface and ANIMEC numerical results will be discussed.
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1. Introduction
In LHD experiments, high beta plasmas with more

than 5% volume averaged beta are obtained without any
disruptive phenomena. This beta value is relevant and req-
uisite as a design criterion for fusion reactor systems.

High β plasmas in LHD experiments are generated
and maintained only by tangentially injected neutral beams
(NB) with low density and low magnetic field. The high
energy ions from the tangential NB are well confined even
when the magnetic field is low. Because of the long slow-
ing down time of high energy particles in low density
regimes and the low thermal pressure due to the low mag-
netic field, the beam pressure cannot be ignored compared
with the thermal pressure. As a result, it is expected to
cause an anisotropy in the pressure with parallel compo-
nent along the equilibrium magnetic field lines p‖ greater
than p⊥, its perpendicular counterpart. Figure 1 shows
the time evolution of the beta value in a typical LHD
high β discharge with the assumption that the pressure is
isotropic. According to the evaluation of the beam pres-
sure, which is based on a Monte-Carlo analysis, 30% of
the total plasma pressure corresponds to the contribution
from the fast beam pressure ions [1].

Until now, simulations of MHD equilibria with the
anisotropic pressure conditions achieved in LHD exper-
iments have not been undertaken. The final goal is to
establish an identification method of the MHD equilib-
ria achieved in LHD experiments. In this paper, we con-
centrate our investigations on effects of anisotropic pres-

author’s e-mail: asahi.yoshimitsu@nifs.ac.jp
∗) This article is based on the presentation at the 20th International Toki
Conference (ITC20).

Fig. 1 Time evolution of beta values in a typical LHD high beta
discharge. The beta value estimated from diamagnetic
flux measurements is shown with the solid line and from
ne and Te profile measurements with red circles, with the
assumption that the pressure is isotropic. The blue square
points indicate the estimated beam beta value obtained by
Monte-Carlo calculations.

sure in MHD equilibrium computations. Recently, a three-
dimensional MHD equilibrium analysis code was devel-
oped [2], in which a bi-Maxwellian model was imple-
mented in the VMEC code to enable anisotropic pressure
treatments. Using this code, the impact of the magnetic
axis position dependence on anisotropic pressure has been
investigated in the LHD configuration with p‖ > p⊥ plas-
mas.

2. Previous Analytic Model
An analytical expression of the magnetic axis shift

with anisotropic pressure is presented here. Stellarator
plasma equilibria with anisotropic pressure were studied
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by Hitchon et al. [3, 4] which is based on a low-beta
ordering [5]; β∼O(ε2) and the CGL formula [6]; p =
p⊥I +(p‖−p⊥)nn. Here, ε is the inverse aspect ratio, p‖ and
p⊥ are pressure components parallel and perpendicular to
magnetic field, I is the unit tensor and n is the unit vector
along the magnetic field. In this framework, the leading
terms of p‖ and p⊥ are functions of only the magnetic flux
surface, and these are defined as P‖ and P⊥, respectively.
In this case, the Pfirsch-Schlüter current can be expressed
as [3, 7]

jPS =
ρ

b∗
(P′‖ + P′⊥) cos θ, (1)

and in the case isotropic pressure,

jPS =
ρ

b∗
p′ cos θ, (2)

where ρ = r/a, ′ = ∂/∂ρ and θ is the poloidal angle. The
variables used in the above equations are defined in Ref.
[3, 8].

3. Calculation Model
The MHD equilibrium study in LHD has been done

mainly with the VMEC code, which assumes that plasmas
have isotropic pressure. Recently, the VMEC code was
extended by Cooper et al. to be able to treat anisotropic
pressure, and this version of VMEC is referred to as the
ANIMEC code [2].

By introducing a bi-Maxwellian model [9], the ANI-
MEC code is capable of identifying anisotropic pressure
MHD equilibria without inconsistency. The velocity dis-
tribution function of energetic particles is expressed as fol-
lows,

Fh(s, ε, μ) = N(s)
(

mh

2πT⊥(s)

) 3
2

× exp
[
−mh

(
μBC

T⊥(s)
+
|ε − μBC|

T‖(s)

)]
, (3)

where s is the radial index, N(s) is the label of the density-
like amplitude factor, ε is the kinetic energy, mh is the mass
of the high-energy particles, and T‖ and T⊥ are the tem-
peratures of high energy particles in the direction parallel
and perpendicular to magnetic field. Then the total parallel
pressure is expressed as

p‖(s, B) = M(s) (1 + ph(s)H(s, B)) . (4)

Here, the H(s, B) factor describes the variation of the pres-
sure distribution around the flux surfaces caused by the en-
ergetic trapped particles. The plasma region where B > BC

H(s, B) =
B/BC

1 − T⊥
T‖

(
1 − B

BC

) , (5)

and where B < BC,

H(s, B) =
B

BC

1 + T⊥
T‖

(
1 − B

BC

)
− 2

(
T⊥
T‖

) 5
2
(
1 − B

BC

) 5
2

[
1 − T⊥

T‖

(
1 − B

BC

)] [
1 + T⊥

T‖

(
1 − B

BC

)] . (6)

By choosing the value BC to be smaller than the minimum
magnetic field strength in the plasma confinement region,
calculations which exclude the effect of energetic trapped
particles can be performed.

The MHD equilibrium analysis code VMEC and its
ANIMEC extension identifies the shape of the flux surfaces
using a variational plasma energy W minimizing principle.
In the case that pressure is isotropic, the plasma energy
functional is written as

W =
∫

dV
(

B2

2μ0
+

p
Γ − 1

)
. (7)

However, in the case of anisotropic, W is written as fol-
lows,

W =
∫

dV
(

B2

2μ0
+

p‖(s, B)
Γ − 1

)
. (8)

The pressure perpendicular to field p⊥ is estimated from
parallel force balance relation [10], hence

p⊥(s, B) = p‖(s, B) − B
∂p‖
∂B

∣∣∣∣∣
s
. (9)

Equations (8) and (9) are used in the ANIMEC code.
Pressure components p‖ and p⊥ from the bi-

Maxwellian velocity distribution function model invoked
are not constant in each flux surface. Typical profiles of
p‖ and p⊥ corresponding to the LHD vertically elongated
cross-section are shown in Fig. 2 in the situation that the
parallel component is larger than the perpendicular one.
Figures 2 (a) and (b) is an example of the result without
trapped particles. In this calculation, BC is set to 0.24 [T],
which is lower than the minimum magnetic field. In fact,
the minimum field strength is 0.30 [T] in the plasma re-
gion. An example in which trapped particles effects are
taken into account is modeled in Figs. 2 (c) and (d). Here
we chose, BC = 0.60 [T]. These are obtained by setting
T⊥/T‖ = 0.1, ph = 3, Γ = 0, M(s) = m0(1 − s) in regard to
the equations (4), (5) and (6). Each pressure value p‖ and
p⊥ is normalized to its respective maximum value pMax

‖
and pMax⊥ . In Figs. 2 (b) and (d), there is no symbol in the
vicinity of ρEquatorial = 0 because the ANIMEC code uses
half-integer radial mesh discretization and there is conse-
quently no data at the magnetic axis.

4. Numerical Results from the Bi-
Maxwellian Model
To investigate effects of anisotropic pressure with re-

spect to the magnetic axis shift, a large number of numeri-
cal calculations are performed under various conditions us-
ing the ANIMEC code. In these simulations, the pressure
profile M(s) is given as M(s) = m0(1 − s) where s = ρ2.
The maximum pressure (at the magnetic axis) corresponds
to m0. The values of m0 chosen are 0.5, 1.0, 1.5, ...×103 [Pa]
and T⊥/T‖ is given the [0, 1] range. The ratio of specific
heats Γ in Eq. (8) and (7) is set to zero for simplicity, which
corresponds to the limit of incompressibility.
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Fig. 2 Pressure contours of p‖ and p⊥ components without
trapped particles (top row) and with trapped particles
(bottom row) in the LHD vertically elongated cross-
section(a, c) and its profile along the z = 0 line(b, d)
obtained with the bi-Maxwellian model. In figures (a)
and (c), the red and the green curves denote p‖ and p⊥
contours and the shape of the flux surfaces are shown
with gray dotted lines. In figures (b) and (d), the red and
the green symbols denote p‖ and p⊥ profiles and the gray
symbols denote the flux surface averaged value.

First of all, we define two β values under anisotropic
pressure. One is the total beta value which is estimated
from the plasma energy and the principle of equipartition
of energy.

βtot =

1
3

∫
dV

(
p‖ + 2p⊥

)
∫

dV
(

B2

2μ0

) . (10)

The other is the value expected to yield the equivalent mag-
nitude of axis shift compared with isotropic pressure equi-
libria. Focusing on the dependence of the Pfirsch-Schlüter
current on the pressure components in Eq. (1), which is the
result of the earlier analytic model [3, 4], we define the
equivalent beta value as

βeq =

1
2

∫
dV

(
p‖ + p⊥

)
∫

dV
(

B2

2μ0

) . (11)

Note that these two β values defined above are identical
when a plasma has isotropic pressure p⊥ = p‖.

The relation between the beta values and the magnetic
axis position is shown in Figs. 3-5. The points with green,
blue, pink, light blue colored correspond to the different
value m0 = 0.5,1.0, 1.5, 2.0 [×103 Pa] with T⊥/T‖ = [0, 1]
of Eqs. (4)-(6) in the computations.

As shown in Figs. 3-5, the magnetic axis shift is pro-
portional to βeq rather than βtot. The amount of magnetic

Fig. 3 The dependence of the magnetic axis position on the
beta value obtained from calculations with trapped par-
ticle effects neglected. The horizontal axes in each fig-
ure are denoted by βtot or βeq. The gray points cor-
respond to the isotropic pressure plasma axis positions
which T⊥/T‖ = 1.

Fig. 4 The dependence of the magnetic axis position on the beta
value obtained from calculations with a small fraction of
trapped particles.

Fig. 5 The dependence of the magnetic axis position on the beta
value obtained from calculations with a large fraction of
trapped particles.

axis shift depends on the Pfirsch-Schlüter current. Because
βtot and βeq are the indices of the internal energy of the
plasma and the Pfirsch-Schlüter current, respectively, the
amount of axis shift is proportional to βeq. On the contrary
for the case that plasma pressure is isotropic, the two in-
dices are identical; βtot = βeq. Thus, the axis shifts of the
anisotropic pressure and the isotropic pressure equilibria
have the same dependence on βeq.

As seen from Fig. 3 (b), magnetic axis appears to be
a multi function of βtot. In this calculation, T⊥/T‖ varies
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Fig. 6 The maximum absolute value of the difference between
the parallel pressure and its flux surface average normal-
ized to its average value on axis (a) and the correspond-
ing maximum absolute value for the perpendicular pres-
sure (b) as a function of the ratio of 〈p⊥〉 to

〈
p‖

〉
corre-

sponding to the strength of the anisotropy at the magnetic
axis. Here, 〈A〉 means the surface averaged of the quan-
tity A. The three different kind of points plotted highlight
the impact of the energetic trapped particle fraction. The
red ‘+’ points correspond to simulations in which trapped
particle effects are excluded. The green ‘×’ points and
the blue ‘∗’ points correspond to conditions of small and
large trapped particle fractions included, respectively, in
the low magnetic field region of the plasma.

from zero to unity for each m0 value as shown before, with-
out holding either βtot or βeq fixed. The form

βeq =
3
2
βtot − 1

2
β⊥ =

3
2
βtotβ‖

(
1 + β⊥/β‖

1 + 2β⊥/β‖

)
(12)

with

β‖ =

∫
dV p‖∫

dV
(

B2

2μ0

) , β⊥ =
∫

dV p⊥∫
dV

(
B2

2μ0

) , (13)

means that βeq can vary with different ratios of β⊥/β‖ even
for βtot constant. Modifications of the T⊥/T‖ ratio induce
changes in β‖ and β⊥. Thus the magnetic axis can have
multiple values in terms of βtot because the position of the
magnetic axis is uniquely identified by βeq.

Figure 6 illustrates the maximum absolute difference

between the surface averaged pressure value and its nor-
mal value as a function of the anisotropy. The maximum
of this difference is estimated in the vertically elongated
cross-section. Figures 6 (a) and (b) show the variations of
p‖ and p⊥, respectively. As the results include different
values of m0 like 0.5, 0.1, 1.5, 2.0 [×103 Pa] plotted simul-
taneously, there is the appearance of a multi-valued depen-
dence

[〈p⊥〉 / 〈p‖
〉]
ρ=0. For the case of a large trapped par-

ticle fraction, the abscissa value
[〈p⊥〉 / 〈p‖

〉]
ρ=0 is smaller

than unity even when T⊥/T‖ = 1. This is caused by the
anisotropy of the velocity distribution function because
the value Bc/B can become larger than unity. Here, ‘〈〉’
means the averaged value on a flux surface. Figure 6 im-
plies that the difference in the variation of the pressures
around the flux surfaces needs to grow as the anisotropy[〈p⊥〉 / 〈p‖

〉]
ρ=0 factor decrease in order to satisfy equilib-

rium force balance. Particularly for p⊥ component, in the
case that the trapped particle fraction exists in a large do-
main of the low magnetic field region, this difference needs
to remain large even when

[〈p⊥〉 / 〈p‖
〉]
ρ=0 is nearly equal

to unity.

5. Summary
MHD equilibria with anisotropic pressure plasma are

analyzed in a LHD magnetic configuration. Here, we as-
sume the pressure is based on a bi-Maxwellian distribution
function model whose moments are nonconstant on each
flux surface. We have focused on the magnetic axis shift
due to the anisotropic pressure with a large parallel com-
ponent that would be consistent with the fast ions from tan-
gential neutral beam injection. As the result, the change of
the axis position depends on the pressure anisotropy, but
does not depend on the difference of the pressure from its
averaged value on each flux surface. The results from an
analytic model which assumes constant pressure on each
flux surface coincide with those from our numerical analy-
sis based on a bi-Maxwellian model. A study of the reason
why the two models have comparable magnetic axis shifts
constitutes a subject for future research.
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