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Turbulent transport in the edge region of tokamak plasmas is simulated using a reduced set of magnetohy-
drodynamic equations. Repetitive and intermittent transport bursts driven by resistive ballooning turbulence with
external heating are observed. The effect of a resonant magnetic perturbation (RMP) on turbulent heat transport is
examined, where the electromagnetic response of the plasma to the RMP is solved consistently. The penetration
of the RMP excites a magnetic island chain and damps the poloidal flow near the magnetic islands. The transport
bursts are found to be replaced by more moderate and continuous transport. The change in the transport pattern
is associated with the effect of the RMP on nonlinear coupling of fluctuations.
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1. Introduction
The control of turbulent transport is an important issue

for magnetically confined fusion plasmas such as tokamaks
and helical devices. Repetitive and intermittent transport
bursts due to magnetohydrodynamics(MHD) turbulence in
the H-mode pedestal region, called edge-localized modes
(ELMs), will be a serious problem in future devices. Re-
cently, current coils have been used to apply resonant mag-
netic perturbations (RMPs), which generate magnetic is-
land chains or a stochastic magnetic layer by forced mag-
netic reconnection and mitigate or eliminate the ELMs [1].

Early simulation studies showed that oscillation simi-
lar to a so-called type-I ELM is driven by competition be-
tween destabilization of the pressure-gradient-driven tur-
bulence by external heating and stabilization by flow shear
[2]. Concerning the influence of magnetic islands on tur-
bulent transport, the intrinsic tearing instability such as the
classical and neoclassical tearing modes has been mainly
investigated. This is because research has focused on core
confinement properties, and the influence of RMPs has
rarely been considered. The electrostatic resistive bal-
looning mode was recently simulated in the presence of
RMPs [3], and the transport bursts were found to be dras-
tically mitigated. However, in the electrostatic model, the
influence of RMPs is included as a background magnetic
field perturbation, and physical processes associated with a
forced magnetic reconnection, such as (1) the screening of
RMP penetration by plasma rotation and (2) the excitation
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of perturbed flows by RMPs, are outside of scope.
The goal of the present study is to consistently simu-

late the interaction between resistive ballooning turbulence
and magnetic islands due to RMPs in the electromagnetic
model. In our previous study, we simulated the nonlinear
dynamics of intrinsic magnetic islands in the presence of a
RMP for single-helicity perturbations [4]. In this study, the
simulation code is extended to solve multi-helicity pertur-
bations, and the three-dimensional dynamics of the turbu-
lence is simulated. In addition, we carefully consider edge
boundary conditions with the RMP.

2. Model
First, we introduce a conventional set of reduced

MHD equations, that model torus plasmas with large as-
pect ratios by cylindrical plasmas with effective toroidal
curvatures [5]. In the model, a quasi-neutral condition be-
tween ion and electron densities is considered, and ion and
electron temperatures are assumed to be constant. Because
we assume constant temperatures, the effect of thermal
transport parallel to the magnetic field lines is outside the
scope of the model. We select this model mainly because
of difficulties in multi-scale simulations in the presence
of the spiked eigenfunctions generated by parallel thermal
transport. For simplicity, we assume that ion and electron
temperatures are equal to each other, and neglect the in-
fluence of electron and ion diamagnetic drifts and electron
inertia. The vorticity equation, the generalized Ohm’s law,
the continuity equation, and the equation of parallel ion
motion are given respectively by
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where f and g are arbitrary variables. The cylindrical co-
ordinate variables (r, θ, z) correspond to the minor radial
length, the poloidal phase angle, and the toroidal length
in the torus coordinate, respectively, and (r̂, θ̂, ẑ) are unit
vectors. The time and lengths are normalized as t/τA →
t, r/a → r, z/R0 → z, with τA = R0/vA, where vA is the
Alfvén velocity, a is the minor radius, and R0 is the major
radius of the torus plasmas. ∇⊥Ω is the effective toroidal
curvature of the magnetic field line, where Ω = 2r cos θ.
The variables {φ, A, p, v‖} denote the electrostatic potential,
the vector potential parallel to the ambient magnetic field,
the electron (and also ion) pressure and the plasma veloc-
ity parallel to the ambient magnetic field, respectively. β
is the ratio between the kinetic pressure and the magnetic
pressure measured at the plasma center and the coefficient
β̂ is defined by β̂ = β/(1 + β). The transport coefficients
{μ⊥, μ‖, η‖, η⊥} denote the perpendicular viscosity, the par-
allel viscosity, the parallel resistivity, and the perpendicular
resistivity (β̂η⊥ is the particle diffusivity), respectively. We
assume that these transport coefficients include both clas-
sical transport and anomalous effects due to microscopic
turbulence.

In the framework of the reduced MHD equations, the
arbitrary variable f = f (r, θ, z, t) can be written as

f0(r) +
∑

m,n

f̃m,n(r, t) exp {i (mθ − nz)} , (5)

where m is the poloidal mode number and n is the toroidal
mode number. The boundary conditions for the perturba-
tion amplitudes are basically given such that f̃m,n(0, t) =
f̃m,n(1, t) = 0 for (m, n) � (0, 0) and f̃0,0(0, t) = f̃ ′0,0(1, t) =
0, where prime indicates the radial derivative. To intro-
duce RMPs, an edge boundary condition is imposed on the
vector potential such that Ãm′ ,n′(1, t) = ψa, where (m′, n′)
are the poloidal and toroidal mode numbers of the RMPs,
respectively, and the perturbed radial magnetic field at the
edge corresponds to m′ψa. In earlier studies, special treat-
ment for edge boundary conditions was found to be nec-
essary when considering the RMPs to avoid unphysical
jumps in perturbations appear at the edge. To avoid the un-
physical phenomena, Ref. [6] proposed that the variables

should be flux labels at the edge, i.e., (∇‖ f )|r=1 = 0. This
constraint can be applied to {φ, p, v‖} in the present model.
By using the linearized version of the constraint, perturba-
tion amplitudes that have the same mode number as that
of the RMPs should satisfy φ̃m′,n′ = −(kθ/k̃‖)(φ′0 + φ̃

′
0,0)ψa,

p̃m′ ,n′ = −(kθ/k̃‖)(p′0 + p̃′0,0)ψa and ṽ‖m′,n′ = −(kθ/k̃‖)(v′‖0 +
ṽ′‖0,0)ψa at the edge boundary, where kθ = m′/r is the
poloidal wave number, k‖ = m′/q − n′ is the parallel wave
number, q is the safety factor defined by 1/q = −A′0/r and
k̃‖ indicates the parallel wave number including the influ-
ence of Ã0,0.

In the simulations, the parameters are chosen
such that β = 0.01, μ⊥ = 10−5, η‖ = 10−5, β̂η⊥ = 10−5,
and μ‖ = 10−5. The initial profiles are given by φ0 = 0,
q = 2+2r2, p0 = (β/ε)(1− r2), v‖0 = 0 and j‖0 = (r2/q)′/r.
The Fourier modes with 0 ≤ m ≤ 50 and 0 ≤ n ≤ 25 are
solved in the simulations, where the resonant modes satisfy
the condition 2 ≤ m/n ≤ 4 for the present safety factor. For
these parameters, the resistive ballooning mode is linearly
unstable and the linear growth rate peaks around m = 30,
whereas dominant modes are around m = 10 in the non-
linear stage. The initial amplitude of the vector potential
corresponding to the RMP is given by Ãm′,n′(r, 0) = ψarm′ ,
which is the same as the ideal MHD solution in the absence
of the equilibrium current. To sustain the pressure gradi-
ent, which is relaxed by resistive ballooning turbulence, we
introduce external heating such that

∂ p̃0,0

∂t
= − [φ, p

]
0,0 + β̂

[
A, v‖
]
0,0 + η⊥∇2

⊥ p̃0,0 + S p, (6)

where the subscript ‘0, 0’ denotes the summation of
the (0, 0) Fourier components by nonlinear mode cou-
pling and S p is the heat source given as S p =

(βγp/ε) exp (−r2
1/r

2 − r2/r2
2), this heat source profile is

proposed in Ref. [7]. In the present study, γp = 10−2,
r1 = 0.3, and r2 = 0.5 are considered, and the peak of
the heat source is located at r =

√
r1r2 ≈ 0.4. The selec-

tion of a large γp allows the pressure gradient to recover
several times in the simulations. On the right-hand side
(RHS) of Eq. (6), the first and the second terms correspond
to the perpendicular transport due to convection and paral-
lel transport by sound waves, respectively. A poloidal flow
source is introduced such that
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=

1
r

∫

r
[
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]
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1
r

∫

r
[
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]
0,0 dr

+μ⊥
∂

∂r

[
1
r
∂

∂r
(
rṽθ0,0

)
]

+ ν
(
ṽθ0,0 − V

)
, (7)

where ṽθ0,0 = −φ̃′0,0 is the poloidal flow velocity and
the last term on the RHS of Eq. (7) corresponds to the
poloidal flow source. Following Ref. [2], V is given by
V = dγE×B[1 + tanh {(r − rb)/d}], and we choose γE×B =

2 × 10−2, rb = 0.8, and d = 5 × 10−2 and ν = 10−2. The
magnitude of the shearing rate γE×B chosen here is of the
same order as that of the maximum linear growth rate of
the resistive ballooning mode.
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In the present study, simulations of the resistive bal-
looning turbulence are examined for two cases: (a) without
the RMP and (b) with the RMP for (m′, n′) = (3, 1) with
ψa = 10−3.

3. Numerical Results
Figure 1 shows the time evolution of heat flux at

r/a = 0.8, where ‘convective’ and ‘magnetic’ indicate heat
fluxes associated with the first terms and the second term
on the right-hand side (RHS) of Eq. (6), respectively. In
both figures, convective heat fluxes dominates. Similarly,
the contribution of the third term on the RHS of Eq. (6) is
also negligible compared to the first term. Note that con-
vective heat flux in Fig. 1 (a) shows the repetitive bursts
similar to ELMs, whereas that in Fig. 1 (b) is somewhat
moderate and continuous. The transport bursts in Fig. 1 (a)
are caused not by the flow source but by the strong heating.
If a smaller heat source is considered, the suppression of
the turbulence by the flow shear and the continuous forma-
tion of an edge pedestal in the equilibrium pressure may be
essential for exciting transport bursts, as shown in Ref. [2].

Figure 2 shows the contours of the helical flux func-
tions for (m′, n′) = (3, 1). The helical flux function in

Fig. 1 Time evolution of heat flux (a) without the RMP and (b)
with the RMP.

Fig. 2 Contours of the helical flux functions for (m′, n′) = (3, 1)
at z = 0 and (a) t/τA = 3000 in Fig. 1 (a) and (b) t/τA =

3000 in Fig. 1 (b).

our normalization is defined as hm′,n′ = −(r − rs)2/2Ls −
Re[
∑

m,n Ãm,n exp {i(mθ − nz)}], where rs is the radial posi-
tion of the rational surface q = m′/n′ and Ls is the magnetic
shear length at the rational surface normalized by the mi-
nor radius. The contour of the helical flux function is iden-
tical to the magnitude of the perturbed magnetic field near
the rational surface. The magnitude of the RMP is strong
enough to excite magnetic islands, as shown in Fig. 2 (b).
Therefore, the change in the transport pattern in Fig. 1 is
evidently associated with the excitation of the magnetic is-
land chain.

Figure 3 shows the electrostatic potential contours.
In Fig. 3 (i), the structure is almost concentric, whereas in
Fig. 3 (ii) a finger structure is observed. These results con-
firm that the intermittent transport burst in Fig. 1 (a) is as-
sociated with a change of the stability of the resistive bal-
looning mode. In Figs. 3 (iii) and (iv), perturbations with
m ∼ 10 are observed, which drive moderate transport in
Fig. 1 (b). Similar properties are found for the pressure per-
turbations.

Figure 4 shows the radial profiles of the equilibrium
pressure. The global change in the pressure profile in
Fig. 4 (a) is associated with the radial propagation of fluctu-
ations from the edge region to the core region. This change
is mitigated in Fig. 4 (b). In particular, the pressure profile
near magnetic islands is slightly modified. The sustained
pressure gradient inside the magnetic islands indicates that
perpendicular heat transport is much faster than parallel
transport, as shown in Fig. 1.

Figure 5 shows the radial profiles of the equilibrium
poloidal flow velocity. The poloidal flow around the O-
point is damped, which indicates that the screening effect
of the poloidal flow is not strong enough to prevent the pen-
etration of the RMP. The damping of the poloidal flow, i.e.
the locking of the poloidal plasma rotation, is explained by
the Lorentz torque driven by the interaction between the
RMP and the magnetic island chain, which corresponds

Fig. 3 Contours of the electrostatic potential at z = 0. (i) and
(ii) are at t/τA = 2700, respectively, and t/τA = 3200
in Fig. 1 (a), and (iii) and (iv) are at t/τA = 2550 and
t/τA = 3350 in Fig. 1 (b), respectively.
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Fig. 4 Radial profiles of the equilibrium pressure (a) without the
RMP and (b) with the RMP.

Fig. 5 Radial profiles of the equilibrium poloidal flow velocity
(a) without the RMP and (b) with the RMP.

to the second term on the RHS of Eq. (7). Simulations of
cases without the poloidal flow ṽ0,0 confirm that the exis-
tence of the poloidal flow is not essential for the change of
the transport pattern observed in Fig. 1.

Figure 6 shows Fourier spectra of convective heat
flux, where the modes that contribute to heat trans-
port are identified. In Fig. 6 (b), strong peaks due to
(13, 4), (16, 5), (17, 5) and (20, 6) are observed simultane-
ously, whereas (16, 5) and (17, 5) are weak in Fig. 6 (a).

Fig. 6 Fourier mode spectra of convective heat flux (a) without
the RMP (t/τA = 3200) and (b) with the RMP (t/τA =

3350).

This implies that the (3,1) mode due to the RMP plays
an important role in the nonlinear coupling of fluctuations
excited by the resistive ballooning mode and affects the
transport pattern.

4. Summary
In summary, turbulent transport in the presence of a

single RMP was simulated, and a change in the transport
pattern was observed. Because no flattening of the pressure
gradient was observed, the result is not understood as the
enhancement of heat transport parallel to the reconnected
magnetic field lines. Alternatively, it is newly found that
the magnetic islands intermediate nonlinear couplings of
fluctuations and change the transport properties.
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