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First results from nonlinear simulations of energetic particle modes and the resulting transport of energetic
ions using realistic tokamak geometry are presented and compared with results obtained with a shifted-circle
model equilibrium and otherwise equivalent parameters. The modes excited in both cases have similar frequen-
cies and mode structures and cause a similar amount of energetic ion transport during the first few hundred Alfvén
times of the nonlinear evolution. The similarity in transport is interesting since it stands in contrast to the reduced
linear growth rate and saturation level in the non-circular case: for the parameters chosen, both are reduced by
a factor of 2 compared to the circular case. These results motivate further studies, including a verification of
our results with other codes, a clarification of the mechanisms underlying the linear stabilization, and a detailed
analysis of the mode activity and particle redistribution during the nonlinear evolution.
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1. Introduction
Nonlinear simulations are a useful and necessary tool

to understand and interpret physical processes occurring
when energetic ions interact with magnetohydrodynamic
(MHD) modes in magnetically confined fusion experi-
ments. Due to the approximations used, the quantita-
tive predictive capabilities are still limited to relatively ro-
bust characteristics, such as the mode frequency range and
mode structures. The predictions for the maximum ampli-
tude and the amount of transport caused by the Alfvénic
modes is expected to depend strongly on physical ingredi-
ents that have been ignored or strongly simplified, such as
the magnetic flux surface geometry, free plasma boundary,
and the interaction with kinetic bulk plasma dynamics.

While more advanced models and codes are under de-
velopment, the state-of-the-art tools for global nonlinear
simulations are still so-called hybrid codes, which treat the
bulk plasma as an MHD fluid and follow the kinetic motion
of energetic ion guiding centers. Due to their low density,
the energetic ions enter mainly via the resonant and non-
resonant contribution of their anisotropic pressure, while
plasma inertia is mainly carried by the thermal bulk ions.
Thus, the energetic ions may be taken to enter the MHD
equations via the pressure-curvature coupling term only,
requiring that the redistribution of energetic ions (and as-
sociated charge separation) be sufficiently small.

In this short paper, we present first results concerning
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the role of the magnetic flux surface geometry on the dy-
namics of energetic particle modes (EPM) [1, 2], with the
purpose of indicating the direction for further work. We
use the hybrid code MEGA [3, 4] in combination with the
ideal MHD equilibrium code MEUDAS [5], which pro-
vides the equilibrium magnetic field geometry and bulk
plasma pressure profile. The scenario considered is based
on discharge E039672 in Japan Atomic Energy Research
Institute Tokamak Upgrade, JT-60U, where the redistribu-
tion of energetic ions injected via negative neutral beams
was studied during so-called Abrupt Large Events (ALE)
and fast frequency sweeping (fast FS) modes [6]. We re-
visit previous simulations for this case, which were carried
out by Briguglio et al. [7] in simplified geometry with cir-
cular magnetic flux surface cross-sections. This circular
equilibrium model is also implemented in MEGA in or-
der to carry out comparisons with the realistically shaped
case. The modes of interest have low toroidal and poloidal
mode numbers, n = 1 and m = 1, ..., 4, and frequencies in
the range 30 kHz � f � 70 kHz, which corresponds to 0.15
� ω/ωA0 � 0.35 in on-axis Alfvén frequency units. The
plasma profiles are shown in Fig. 1.

2. Model
MEGA solves the full MHD equations for the bulk

plasma and a more detailed description may be found in
Ref. [3]. In the present simulations, we choose to freeze
the bulk density and pressure, ρ and P, since their evolution
cannot be adequately described by MHD for the frequency
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Fig. 1 Simulation setup: Radial profiles of (a) safety factor, (b)
bulk ion density, (c) energetic ion density, (d) critical en-
ergy and bulk beta. r/a is the volume-averaged radius.

range at hand. The remaining equations describing the 3-
dimensional dynamics of the bulk plasma are the equation
for the E × B drift velocity V and magnetic field B:

ρ∂tV = −ρΩ × V + J × B − ∇P − ∇ · Π̂H

−ρ
2
∇V2 − νρ∇ ×Ω + 4

3
νρ∇(∇ · V), (1)

∂t B = −∇ × E; (2)

where E = −V×B+ηJ , μ0 J = ∇×B,Ω = ∇×V, and Π̂H

is the anisotropic pressure tensor computed from the per-
turbed energetic ion distribution function. A rigid, no-slip
boundary condition (V = 0) is imposed at the plasma sur-
face. The energetic particles are modeled as guiding cen-
ters, with exactly conserved magnetic moment (∂tμ = 0)
and with the following equations governing the evolution
of the guiding center location Rgc and parallel velocity v‖:

∂t Rgc = u
∗
‖ + uE + uB, (3)

mHv‖∂tv‖ = u∗‖ · [eHE − μ∇B]; (4)

where u∗‖ = v‖[B + ρ‖B∇ × b]/B∗, ρ‖ = v‖/ΩH and B∗ =
B(1+ ρ‖b ·∇ × b). Particles crossing the plasma boundary
are considered lost. The discretization of the fields is car-
ried out on a cylindrical grid, (R, ϕ, Z), the particles are rep-
resented by phase-space markers using the δ f weighting
scheme, and the first-order particle-in-cell method is used
for mapping between particle positions and grid nodes.

Beam ions in JT-60U are strongly anisotropic. How-
ever, for our first simulation, we choose to use only the
isotropic component, FH(r, v), of the local slowing-down
distribution function previously employed in Ref. [7]:

FH =
nH(r)[

E3/2
c (r) + E3/2

k

]
ln
[
1 + E3/2

0 /E3/2
c (r)

] ; (5)

where Ek = mHv
2/2, Ec and E0 are the kinetic, critical

and birth energies, respectively. Since the profiles for the

Fig. 2 Evolution of the n = 1 mode energy W: (a) log-scale plot
and (b, c) linear-scale plots of the nonlinear evolution in
the circular (dashed) and shaped case (solid). The labels
(i)-(iv) in the circular case and (I)-(IV) in the shaped case
refer to the dominant mode at a given time (cf. Fig. 3).

density and critical energy are functions of the volume-
averaged minor radius r and since markers are also ini-
tialized on loss orbits, FH is not a true equilibrium and
requires some time for “prompt relaxation”, which occurs
during the first approximately 100 Alfvén times. The cen-
tral value of the energetic ion toroidal beta is βH0 = 0.035
and the profile βH(r) is similar to that of the critical energy,
Ec(r), shown in Fig. 1 (d).

For comparability between the circular and shaped
case, the relevant physical quantities must be equal or
equivalent in both cases. In particular, the continuous shear
Alfvén spectra, ωA(r)/ωA0, should differ only for frequen-
cies above the toroidicity-induced gap (here, ω/ωA0 �
0.4). This is achieved by using the same profiles q(r),
nbulk(r), βbulk(r), and the same inverse aspect ratio, a/R0 =

0.29; where a is the minor radius in the circular case and
the mean distance of the plasma boundary from the mag-
netic axis in the shaped case. In the shaped case, the outer
2% of the flux space are truncated to avoid the divertor
X-point. In both cases, we use the same energetic ion dis-
tribution function FH and the same ratio v0/(ωcH0R0) =
0.032, where v0 =

√
2E0/mH is a characteristic velocity

andωcH0 = ZHeB0/mH the cyclotron frequency of the ener-
getic ions. The choice of an isotropic distribution, Eq. (5),
implies that the comparison between circular and shaped
equilibria is not sensitive to geometry-induced changes in
the pitch angle of the dominant resonance, since all pitch
angles have the same phase-space density.

3. Results
Results are presented in Figs. 2-6 for both circular and

shaped cross-section. In Fig. 2, the evolution of the n = 1
mode amplitude (measured by the square root of kinetic
mode energy, W = mini

∫
d3x|V|2) is shown. The labels (i)-
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Fig. 3 Snapshot of the power spectrum contours of the electro-
static potential φ in (a, b) the circular and (c, d) the shaped
case. (a) and (c) show the linear eigenmodes, (b) and (d)
the nonlinear modes in the respective case. For the spec-
tral analysis, a Hanning time window of width 200ω−1

A0
around t0 is used. The continuous spectrum (dashed) is
computed from a large-aspect-ratio approximation.

Fig. 4 Radial mode structure of individual poloidal harmonics
m = 0, 1, 2, 3, 4 of the n = 1 component of the electro-
static potential |φm,n(r)| in (a, b) the circular and (c, d) the
shaped case. (a) and (c) show the linear eigenmodes, (b)
and (d) the nonlinear modes in the respective case.

(iv) in the circular and (I)-(IV) in the shaped case indicate
different modes, which dominate at different times. The
power spectra in Fig. 3 show the frequency and radial loca-
tion of the dominant modes during the linear (left) and non-
linear regime (right). The composition of the global mode
structure from multiple poloidal harmonics m = 0, ..., 4 is
shown in Fig. 4 and the structure in the poloidal plane is
shown in Fig. 5. Changes in the energetic ion density are
shown in Fig. 6.

In Fig. 2 (a) it is found that the linear growth rate in the
shaped case is about 2 times lower than in the circular case.

Fig. 5 Snapshot of the electrostatic potential φn=1(R,Z) mode
structure contours in (a) the circular and (b) the shaped
case. (a) and (c) show the linear eigenmodes, (b) and (d)
the nonlinear modes in the respective case.

Fig. 6 Energetic ion density redistribution during the first two
peaks of nonlinear n = 1 mode activity in (a) the circular
and (b) the shaped case.

The saturation amplitude and the amplitude during the sub-
sequent nonlinear evolution is also about 2 times lower
than in the circular case. However, Fig. 2 (b, c) shows that
the life-time of the peaks in the nonlinear regime of the
shaped case is 2 times longer than in the circular case.

The linear mode is labeled (i, I). In both the circular
case (Figs. 3-5, top) and the shaped case (bottom), the fre-
quency of the linear modes is ω/ωA0 = 0.2 and the mode
structures peak near r/a ≈ 0.5. At this location, the fre-
quency matches that of the m = 2 continuum and the ener-
getic ion pressure has a steep gradient, so these modes are
typical EPM. The smaller mode width in the shaped case
may, at least partly, be explained by the lower linear growth
rate competing with phase mixing (continuum damping).

The reason for the lower linear growth rate in the case
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with non-circular flux surfaces remains to be determined.
Such a stabilization may result from changes in continuum
damping, field line connection length, drift orbit trajecto-
ries, or the coupling between field line curvature and ener-
getic ion pressure tensor, through which the kinetic com-
pression enters the MHD equations. Here, the field line
connection length is similar in both cases and the linear
mode frequency is a factor of 2-3 below the ellipticity-
induced gap, so we expect continuum damping to be simi-
lar in both cases and focus our attention on the kinetic en-
ergetic ion compression and pressure-curvature coupling.
Preliminary measurements of the energetic ion pressure
field indicate that the ratio of pressure perturbations (nor-
malized by mode amplitude) between shaped and circular
cases lies in the range 0.6 to 0.9, indicating that the kinetic
compression is indeed weaker in the shaped case. In ad-
dition, shaping-induced changes in the pressure-curvature
coupling may affect EPMs in a similar way as MHD bal-
looning modes (e.g., see Fig. 5 in Ref. [8]). Further study
with additional diagnostics are required to explain the dif-
ferent growth rates in the circular and shaped case.

During the nonlinear saturation phase, the EPM
moves radially outward. In the circular case, we observe
a superposition of two outward propagating components,
which are captured by the snapshot shown in Fig. 3 (b).
One component, labeled (ii), sweeps down in frequency,
following the m = 2 continuum. The other component, la-
beled (iii), localizes near the lower accumulation point of
the toroidicity-induced gap located at r/a ≈ 0.75, which
has a frequency similar to that of the linear EPM (i). Note
that mode (iii) appears only transiently and it remains to be
examined whether or not it couples to a toroidicity-induced
Alfvén eigenmode (TAE) [9]. In the shaped case, shown
in Fig. 3 (d), the down-sweeping component (II) dominates
and its lowest frequency is about ω/ωA0 = 0.11.

While modes (ii, II) and (iii) decay, another mode, la-
beled (iv, IV) in Fig. 3 (b, d), appears in the region 0.1 �
r/a � 0.4 in both the circular and shaped case. Its fre-
quency hovers around 0.3 � ω/ωA0 � 0.35; that is, on or
above the local m = 1 continuum and around the accumu-
lation point of the toroidicity-induced gap near r/a ≈ 0.35,
where m = 1 and m = 2 couple. Viewed in the poloidal
plane, the centralized mode (iv, IV) tends to rotate in the
opposite direction compared to the other modes, as indi-
cated by arrows in Fig. 5 (b, d).

The variable frequency and mode structure of mode
(iv, IV) clearly indicates its EPM nature (as opposed to
an MHD Alfvén eigenmode). Due to the weak magnetic
shear near the magnetic axis, it can be expected that mode
(iv, IV) is easily excited even with weak drive. Note, how-
ever, that the localization of mode (iv, IV) in a region where
the energetic ion pressure gradient is small does not nec-
essarily imply weak wave-particle interaction. The pres-
sure contours of the resonant particles lie on surfaces of
constant canonical toroidal momentum, P · ∇ϕ = Pϕ =

eHψ + mHvϕ, which differ from flux contours, especially

near the magnetic axis. Hence, mode (iv, IV) may play a
significant role for energetic ion transport and should be
analyzed in more detail.

A first impression of the spatial redistribution of ener-
getic ions caused by all the modes described above is given
in Fig. 6, where the change in the velocity-space-averaged
energetic ion density field is shown. This result is obtained
by subtracting the density field in the linear stage after
prompt relaxation, nH(R, Z, tωA0=150), from the density
field found after the second peak in n = 1 mode activity
(tωA0 = 350 in the circular and tωA0 = 650 in the shaped
case). During that interval, the energetic ion density varies
on the order ± 10% in both the circular and shaped case.

4. Conclusion
Summarizing the observations made, we find that the

frequencies and structures of linear modes (i, I) and long-
lived nonlinear modes (iv, IV) are similar in simplified
circular geometry and realistically shaped geometry. The
same counts for the frequency sweeping mode (ii, II). We
expect that these robust results are most readily compa-
rable to experimental data. In fact, as pointed out in
Ref. [7], the range of frequencies obtained in the simu-
lations, 0.11 � ω/ωA0 � 0.35 (22 kHz � f � 70 kHz), is
similar to the range of frequencies measured experimen-
tally, indicating that the q profile may have been estimated
well. (Note that due to the low magnetic field strength in
this discharge [6] the measurements of q are not very ac-
curate and q(r = 0) may vary by ± 0.5.)

Differences between the circular and shaped cases
were found in the growth rate and the saturation amplitude
of the linearly most unstable mode. In the examples stud-
ied, these are a factor of 2 lower in the shaped case than
in the circular case. However, the life-time of the peaks of
mode activity in the shaped case is a factor of 2 longer than
in the circular case. This may be a reason for why, after the
first two peaks of n = 1 mode activity, the redistribution of
energetic ions is similar in both the circular and the shaped
case.

The finding that transport is not reduced despite a re-
duced growth rate and saturation level is important for the
interpretation of results based on linear and quasi-linear
analyses, since it indicates that a stabilizing/destabilizing
effect of certain geometric features (such as ellipticity and
triangularity) does not imply less/more transport. A veri-
fication of this result with other codes is desirable, since
conclusive convergence studies with respect to spatial res-
olution are computationally expensive with MEGA.

Building on the results presented in Ref. [7], the dis-
placement of particles in radius and velocity space has
to be examined in order to address the question whether
the transport is of diffusive or ballistic kind. The rela-
tion between the nonlinear evolution of an EPM (frequency
sweeping, radial spreading) and the evolution of the parti-
cle distribution function should be analyzed and compared
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with theoretical predictions (for a review, see Ref. [10]).
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