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Effect of Parallel Diffusion of Equilibrium Pressure on Interaction
between Interchange Mode and Static Magnetic Island∗)
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The effect of equilibrium pressure diffusion parallel to the magnetic field on the interaction between a re-
sistive interchange mode and a static magnetic island is studied by means of a nonlinear numerical simulation
based on the reduced magnetohydrodynamics equations. Previous work for the case without the parallel diffusion
of the equilibrium pressure [K. Saito et al., Phys. Plasmas 17, 062504 (2010)] showed that two solutions exist
for a given error magnetic field: one indicates the increase of the island width in the nonlinear evolution of the
interchange mode and the other indicates the decrease of the width. For the case with parallel diffusion of the
equilibrium pressure, our present study shows that only the solution indicating the increase of the width exists;
we discuss the causes for this.
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1. Introduction
In the magnetic confinement of fusion plasmas, nested

flux surfaces are desirable. However, error magnetic fields
caused by the misalignment of the field coils and terres-
trial magnetism can induce static magnetic islands. Such
static islands can affect the plasma confinement. In the
large helical device (LHD), it is able to control the static
islands by using the local island diverter coils [1]. Change
of the island size and the influence on the confinement
are extensively studied in the experiments by utilizing the
coils [2–4].

On the other hand, resistive interchange modes can be
unstable in a heliotron device such as LHD because of the
existence of a magnetic hill in the confinement region. Be-
cause the interchange mode also degrades the plasma con-
finement, it is crucial to study the linear stability and non-
linear dynamics of the mode. However, only a few stud-
ies [5–7] have performed direct numerical simulations of
the static islands and interchange modes. Therefore, the
interaction between static islands and interchange modes
has not been studied adequately.

In this study, we analyze the direct interaction be-
tween a static island and an interchange mode, both of
which have the same mode number, by following the non-
linear time evolution. A previous study [8] showed that
two solutions exist for a given error field depending on the
sign of the initial perturbations in the nonlinear saturation
phase of the interchange mode. One solution corresponds
to an increase in the island width and the other corresponds
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to a decrease in the island width. The study included the
effect of the diffusion parallel to the magnetic field only
for the perturbed pressure. To consider a more realistic
situation, we include the effect of diffusion parallel to the
magnetic field for the equilibrium pressure in this study. In
this case, the term of the parallel diffusion of the equilib-
rium pressure in the equation of state automatically gen-
erates an initial perturbation. Therefore, the solution can
be uniquely determined, and it corresponds to the increase
or decrease of the island width. Hence, we focus on the
change in the island width due to the nonlinear evolution
of the interchange mode.

2. Model Equations and Calculation
Conditions
The interaction between the interchange mode with

(m, n) = (1, 1) and the static island with the same mode
number is studied using the reduced magnetohydrodynam-
ics (MHD) equations [9]. These equations are suitable for
the analysis of such low mode number physics. The re-
duced MHD equations are composed of Ohm’s law, the
vorticity equation and the equation of state for the poloidal
flux Ψ , the stream function Φ and the pressure P. The nor-
malized equations are given by

∂Ψ̃

∂t
= −B · ∇Φ̃ + 1

S
J̃z, (1)

dŨ
dt
= −(B · ∇J̃z + B̃ · ∇Jz eq)

+
β0

2ε2
∇Ωeq × ∇P̃ · ẑ + ν∇2

⊥Ũ, (2)

and
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dP̃
dt
= (ẑ × ∇Φ̃) · ∇Peq + κ⊥∇2

⊥P̃

+κ‖(B · ∇)(B · ∇)(Peq + P̃), (3)

respectively in the cylindrical coordinates (r, θ, z). The par-
allel diffusion term of equilibrium pressure,

Q = κ‖(B · ∇)(B · ∇)Peq, (4)

is involved in Eq. (3). These equations are solved using the
NORM code [10]. The subscript ‘eq’ refers to the equilib-
rium quantity, and the tilde refers to the perturbed quantity.
The magnetic field B is written as B = Beq + B̃, where Beq

and B̃ are defined as Beq = ẑ + ẑ × ∇Ψeq and B̃ = ẑ × ∇Ψ̃ .
Here, ẑ denotes the unit vector in the z direction. The con-
vective time derivative is given by d/dt = ∂/∂t+ ṽ⊥ ·∇, and
the velocity ṽ⊥ is given by ṽ⊥ = ∇⊥Φ̃× ẑ. The operator ∇⊥
is defined as ∇⊥ = ∇−ẑ(∂/∂z). In addition, the current den-
sity in the z direction J̃z and the vorticity in the z direction
Ũ are expressed as J̃z = ∇2⊥Ψ̃ and Ũ = ∇2⊥Φ̃, where ∇2⊥ is
given by ∇2⊥ = (1/r)(∂/∂r)(r∂/∂r) + (1/r2)(∂2/∂θ2). The
dissipation parameters of S , ν, κ⊥, and κ‖ are the magnetic
Reynolds number, viscosity coefficient, perpendicular heat
conductivity coefficient, and parallel heat conductivity co-
efficient, respectively. This analysis uses a large resistiv-
ity of S = 104 to enhance the influence of the interchange
mode. Other parameters of ν = 1.5×10−4, κ⊥ = 1.0×10−5,
and κ‖ = 1.0 are used so that the (m, n) = (1, 1) component
dominates.

Because we focus on the interaction between the inter-
change mode with (m, n) = (1, 1) and the static island with
the same mode number, we assume that the perturbations
have a single helicity with n/m = 1/1 as follows:

Ψ̃ (r, θ, z) =
N∑

n=0,m=n

Ψ̃m,n, Ψ̃m,n = Ψm,n(r) cos(mθ − nz), (5)

Φ̃(r, θ, z) =
N∑

n=0,m=n

Φ̃m,n, Φ̃m,n = Φm,n(r) sin(mθ − nz), (6)

P̃(r, θ, z) =
N∑

n=0,m=n

P̃m,n, P̃m,n = Pm,n(r) cos(mθ − nz). (7)

We employ N = 30 as the highest mode number. In this
case, the kinetic energy EK and the magnetic energy EM

are given by

EK =

N∑
n=0,m=n

Em,n
K , Em,n

K =
1
2

∫
|∇⊥Φm,n sin(mθ − nz)|2dV,

(8)

EM =

N∑
n=0,m=n

Em,n
M , Em,n

M =
1
2

∫
|∇⊥Ψm,n cos(mθ − nz)|2dV.

(9)

The static magnetic island with (m, n) = (1,1) is intro-
duced by assuming thatΨ1,1 has a finite value at the plasma
boundary (r = 1) [5–7],

Ψ1,1(r = 1) = Ψb, (10)

Fig. 1 Profiles of equilibrium pressure and rotational transform.

where Ψb is the external poloidal flux at the plasma bound-
ary. Because the external field does not induce any cur-
rent, the external poloidal flux satisfies the no-current con-
dition ∇2⊥Ψ̃1,1 = 0. The solution of this condition with the
boundary condition given by Eq. (10) shows that the ex-
ternal poloidal flux corresponding to the static island with
(m, n) = (1, 1) is given by Ψ1,1 = Ψbr.

We use a straight heliotron equilibrium corresponding
to the LHD configuration with the vacuum magnetic axis
located at 3.6 m [11]. The equilibrium is constructed by
utilizing a three-dimensional equilibrium, which is calcu-
lated with the VMEC code [12] under the no-net-current
and free-boundary conditions. We employ the equilibrium
pressure profile of Peq = P0(1−r4)2 with a beta value at the
axis of β0 = 4%. Figure 1 shows the profiles of the equilib-
rium pressure Peq and the rotational transform ι. The ratio-
nal surface of ι = 1 is located at r = 0.85, where a substan-
tial pressure gradient exists to drive the interchange mode.
The averaged field line curvatureΩeq is calculated from the
three-dimensional equilibrium magnetic field [13].

3. Island Evolution due to Inter-
change Mode
We follow the nonlinear evolution of the interchange

mode with the static island by introducing finite Ψb. In this
case, at the first time step of t = Δt, the parallel diffusion
of the equilibrium pressure Q gives an initial perturbation
of pressure Pb as given by

Pb = QΔt|t=0 = −κ‖(1 − ι)Ψb
dPeq

dr
Δt. (11)

Therefore, any explicit external initial perturbation is not
given.

Figure 2 shows the time evolution of the kinetic and
magnetic energies of the interchange mode for Ψb = 2.0 ×
10−3. A steady state is obtained after the nonlinear satura-
tion of the interchange mode. As mentioned in Sec. 2, the
n = 1 component dominates. The linearly growing phase
does not appear for Ψb = 2.0 × 10−3, unlike the case with-
out a static island. This difference arises because the in-
homogeneous term Q is added continuously in Eq. (3). As
shown in Eq. (4), the absolute value of |Q| is decreased as
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Fig. 2 Time evolution of (a) kinetic energy and (b) magnetic en-
ergy for Ψb = 2.0 × 10−3.

|Ψb|. It is obtained that the linearly growing phase becomes
seen explicitly as |Ψb| is decreased.

To observe the change in the island due to the nonlin-
ear saturation of the interchange mode, we plot the con-
tours of the magnetic helical flux Ψh in Fig. 3, which is
given by

Ψh(r, θ, z) = Ψeq(r) − 1
2

n
m

r2 + Ψ̃ (r, θ, z). (12)

Figure 3 shows the flux surfaces at t = 0 (before the growth
of the interchange mode) and t = 720 τA (after the nonlin-
ear saturation of the mode). The island width is 0.105 at
t = 0 and 0.153 at t = 720 τA. Figure 4 shows the depen-
dence of the island width on Ψb. The sign of the island
width indicates the island phase. A positive sign corre-
sponds to islands with X-point at θ = 0 and O-point at
θ = π. A negative sign corresponds to islands with X-point
at θ = π and O-point at θ = 0. The blue line shows the
island width at t = 0, which is obtained by the analytical
expression

wB = 4Ψm,n

√
1

mr|Ψm,n|ι′
∣∣∣∣∣∣
r=rs

, (13)

where rs denotes the position of the resonant surface. The
agreement between wB and the island width determined by
the Ψh contour was confirmed in Ref. [8]. The red circles
show the island width after saturation of the interchange
mode for each Ψb. For finite Ψb, the island width after
saturation is always larger than that at t = 0. That is, the
island width increases because of the nonlinear evolution

(a)

(b)

Fig. 3 Contours of the helical magnetic flux on the z = 0
poloidal cross section for Ψb = 2.0 × 10−3 at (a) t = 0
and (b) t = 720 τA.

Fig. 4 Dependence of the island width on Ψb. The blue line
shows the width at t = 0 evaluated with the analytic ex-
pression in Eq. (13). The triangles and circles show the
width in the saturation of interchange mode for Ψb = 0
and finite values of Ψb, respectively.

of the interchange mode. The phase of the island is not
changed by the mode. This property is independent of the
sign of Ψb.

The island width after nonlinear saturation increases
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with |Ψb|. However, the increment of the island width due
to the interchange mode is almost independent of |Ψb|. This
is attributed to the fact that the increase of the island width
after saturation is mainly caused by the increase of the
static island width.

4. Mechanism of Increase of Island
Width
Here, we discuss the reason why the island width in-

creases due to the interchange mode for the case with par-
allel diffusion of equilibrium pressure. For this purpose,
we consider the properties of the mode structures of the
interchange mode for the case with Ψb = 0 at first. In
this case, Pb given by Eq. (11) is zero. Therefore, in the
case without external initial perturbations, nothing hap-
pens. Thus, we employ a pressure perturbation given by

Pini = σ f (r), (14)

as the initial perturbation for the calculation. Here, f (r) is
a function with a very small absolute value defined as

f (r) = β010−18
{
1 − 4

(
r − 1

2

)2 }2
, (15)

and σ denotes the sign of the initial perturbation(σ = −1
or +1). In this case, two solutions exist with the same ab-
solute value and a different sign depending on the value of
σ, as shown in Figs. 4 and 5.

Equation (14) and Fig. 5 show that the signs of the ini-
tial and saturation values of P1,1(rm), where rm denotes the
position where the saturated P1,1 has the maximum abso-
lute value, are positive forσ = +1 and negative forσ = −1.
That is, the sign of the saturated P1,1(rm) is determined by
that of Pini. This is because the function of Pini involves a
component that grows to the saturated P1,1, and therefore
the sign of the component is succeeded to the saturated
P1,1. Even in the case of Ψb = 0, Ψ1,1 has a significant
value at r = rs, because a large resistivity of S = 104

and the cylindrical geometry are employed. Figure 5 also
shows that the signs of Ψ1,1(rs) and P1,1(rm) are the same
in the saturation of the interchange mode for either value
of σ. Note that rm < rs.

We use this property of the interchange mode to ana-
lyze the case of finite Ψb. In this case, Pini is given by Pb

instead of Eq. (14). Figure 6 (a) shows the profile of Pb and
the saturated P1,1 for Ψb = 2.0 × 10−3. The profile of Pb is
positive for r < rs. Therefore, P1,1 grows so as to be pos-
itive at r = rm. Figure 6(b) shows the initial and saturated
profiles of Ψ1,1. At t = 0, Ψ1,1 already has a positive value
at r = rs because Ψ1,1 is given byΨbrs for positive Ψb. The
change of Ψ1,1(rs) due to the interchange mode is also pos-
itive because P1,1(rm) > 0. As a result, the absolute value
of Ψ1,1(rs) increases as the mode grows. This implies that
the island width increases because it is proportional to the
square root of |Ψ1,1(rs)|. The same result is obtained for the
case of negative Ψb.

Fig. 5 Profiles of P1,1 and Ψ1,1 for Ψb = 0 in the saturation phase
of the interchange mode. The dashed and dot-dashed
lines indicate the positions of r = rs and r = rm, respec-
tively.

Fig. 6 Profiles of (a) Pb × 105 and P1,1 at t = 720 τA and (b) Ψ1,1

at t = 0 and t = 720 τA. The dashed and dot-dashed lines
indicate the positions of r = rs, and r = rm, respectively.

5. Conclusions
The effect of equilibrium pressure diffusion parallel

to the magnetic field on the interaction between a static
island and an interchange mode is studied by following the
nonlinear time evolution of the interchange mode in the
straight LHD configuration.

A qualitative difference exists between the change of
the island width for the cases with and without parallel
diffusion of the equilibrium pressure. Only the saturation
solution indicating the increase of the island width is ob-
tained for the case with parallel diffusion of the equilibrium
pressure; however, two solutions corresponding to the in-
crease and decrease of the island width are obtained for
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the case without. This results from the fact that the par-
allel diffusion term generating a pressure component that
increases the poloidal flux at the resonant surface.

We use single helicity perturbations because we fo-
cus on the direct interaction between the interchange mode
with (m, n) = (1, 1) and the static island with the same
mode number. When multiple helicity perturbations are
employed, the excitations of the interchange modes at ra-
tional surfaces different from the island surface must be
considered. If such modes grow substantially, they can in-
teract with the island indirectly through the change in the
structure of the magnetic field and the pressure profile. In-
corporating this effect is beyond the scope of the present
study, but it would be treated in a future work.
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