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We develop a new Monte Carlo simulation method to calculate steady-state solutions of fluid equations for
edge plasmas. To confirm the computational principle of the new method, benchmark tests including nonlinear
problems in one dimensional (i.e., radial) coordinate space are attempted in the first trial; the code based on
the method is called DIPS-1D. We confirm that DIPS-1D is useful for solving a Dirichlet problem and that the
solution given by the present method provides sufficient numerical accuracy.
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1. Introduction
Studies of edge transport in toroidal plasmas are based

mostly on Braginskii’s fluid equations [1, 2], which are
given as

∂u(t, x)
∂t

+ ∇ · (Uu) − 1
2
∇ · (D · ∇u) + ηu = h(t, x), (1)

for a fluid quantity u(t, x), i.e. the density u = n, the par-
allel momentum u = p‖ and the energy u = (3/2)nT
where T is the temperature, in three dimensional (3D) Eu-
clidean space (coordinate space) R3, with the initial con-
dition u(0, x) = Φ(x) at t = 0 and the boundary condition
u(t, x) = G(t, x) on the boundary. The coordinates are de-
fined as x = t(x1, x2, x3) ∈ R3, ∇ = ∂/∂x, and t ∈ [0, t1)
is time. U(t, x) = t(U1,U2,U3) represents the convection
velocity term, and η is assumed to be lower bounded and
is interpreted as the so-called killing rate if η > 0 and the
birth rate if η < 0. D(t, x) =

(
Di j) is the diffusion matrix

(i, j = 1, 2, 3). If the edge plasma exists in an ergodic re-
gion, the fluid equations are usually solved by Monte Carlo
methods [3, 4] because the profiles of the fluid quantities
are significantly affected by the complex structure of the
magnetic field lines including magnetic islands and chaotic
field lines [5]. However, the Monte Carlo methods used
in previous studies could not easily solve the time evolu-
tion of the fluid equations because of nonlinear terms, as
shown in Ref. [6]. In addition, the fluid representation has
an intrinsic disadvantage in that diffusion coefficients are
generally not determined only in the fluid equations. The
simplest and best way to overcome these difficulties might
be full-kinetic-particle simulations (so-called full- f simu-
lations) [7], where f is the total distribution function of
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the particles. However, full- f simulations are generally
time-consuming and recent study showed that the scales
of the time evolution of fM and δ f are well separated even
in the ergodic region [8]. The total distribution function
f is given as f = fM + δ f , where fM is a Maxwellian
distribution function of the background plasma described
by the fluid equations, and δ f is a small deviation (i.e.,
δ f = f − fM) determining the diffusion coefficients. As a
result, rather than conducting full- f simulations, we should
separate the treatments of the fluid quantities and diffu-
sion coefficients [8–10] and consider improving the Monte
Carlo methods used to solve the fluid equations.

In this paper, we report a new Monte Carlo simulation
code produced in the beginning of our code development
for overcoming the difficulty caused by nonlinear terms in
the fluid equations and for calculating the steady-state so-
lutions. To confirm the computational principle of the new
method, we solve Dirichlet problems in one dimensional
(1D, i.e., radial) coordinate space in the first trial. The
code is called DIPS-1D (DIrichlet Problem Solver in 1D
coordinate space). The details of the Monte Carlo method
are presented in Sec. 2. Sec. 3 describes benchmark tests
including nonlinear problems that the method successfully
passed. Finally, a summary is given in Sec. 4.

2. Monte Carlo Method for Solving
Fokker-Planck Type Equations
The fluid equation expressed in the form of the

Fokker-Planck type equation (1) is rewritten as the follow-
ing initial-boundary value problem (t is replaced by t1 − t):

(L + η∗)u +
∂u
∂t
= h∗(t, x) in Q, (2)

u(t1, x) = Φ(x) onM, (3)

u(t, x) = G(t, x) on S, (4)
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whereM is a bounded domain with the boundary ∂M,Q =
M× [0, t1), S = ∂M× [0, t1), and

Lu =
{

1
2

Di j ∂
2

∂xi∂x j + Ui
∗
∂

∂xi

}

u, (5)

Ui
∗ = −Ui +

1
2
∂Di j

∂x j , (6)

η∗ = −η − ∂U
i

∂xi , (7)

h∗ = −h. (8)

If Φ, G, h, η, D and U are assumed to be given-smooth-
functions, the solutions of Eqs. (2)-(4) are known to be de-
scribed as [11–13]

u(t, x ;Φ,G, h∗, η∗,D,U∗)

= Et,x

[

Φ(X(t1)) exp
{∫ τ

t
η∗(s, X(s))ds

}

χτ=t1

]

+ Et,x

[

G(τ, X(τ)) exp
{∫ τ

t
η∗(s, X(s))ds

}

χτ<t1

]

− Et,x

[
∫ τ

t
h∗(s, X(s)) exp

{∫ s

t
η∗(ϑ, X(ϑ))dϑ

}

ds
]

,

(9)

where Et,x is the expectation operator given by the diffu-
sion process X(s) in coordinate space:

dXi(s) = σi
j(t, X(s))dW j(s) + Ui

∗(t, X(s))ds, (10)

satisfying X(t) = x. Here Di j = σi
kgk
σ

j

, gk
 is the metric,

W(s) is a Brownian process, χA is the indicator function of
a set A (e.g., χτ<t1 = 1 if τ < t1, and χτ<t1 = 0 otherwise),
and τ is defined as

τ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the first time ϑ ∈ [t, t1) that X(ϑ) leavesM
if such a time exists,

t1 otherwise;

see Refs. [11, 12]. Hereafter, we consider the fluid equa-
tions in 1D coordinate space.

The simulation code DIPS-1D based on Eq. (9) with
sufficiently large t1 satisfying χτ=t1 = 0 and χτ<t1 = 1 for all
the random walkers used in the code is programmed by the
following scheme.
(i) The initial guess u(0)(0, x) is assumed to be the ini-
tial condition itself Φ(x), and a temporary solution at the
first step u(1)(0, x ;Φ(0),G(0), h(0)

∗ , η
(0)
∗ ,D(0),U(0)

∗ ) is given by
Eq. (9) with Φ(0), G(0), h(0)

∗ , η(0)
∗ , D(0), and U(0)

∗ , which are
evaluated using u(0)(0, x) = Φ(0)(x) = Φ(x).
(ii) After calculating u(k)(0, x) at the kth step, a
temporary solution at the (k + 1)th step u(k+1)(0, x ;
Φ(k),G(k), h(k)

∗ , η
(k)
∗ ,D(k),U(k)

∗ ) is given by Eq. (9) with Φ(k),
G(k), h(k)

∗ , η(k)
∗ , D(k), and U(k)

∗ , which are evaluated using
u(k)(0, x) = Φ(k)(x), where k = 1, 2, 3, . . ..
(iii) The error at the (k + 1)th step, ε(k + 1), is estimated as

ε(k + 1) =

∫ x2

x1
dx

∣∣∣u(k+1)(0, x) − u(k)(0, x)
∣∣∣

∫ x2

x1
dx

∣∣∣u(k)(0, x)
∣∣∣

. (11)

If ε(k+1) is less than ε0, then u(k+1)(0, x) is considered to be
a steady-state solution satisfying Eq. (1), where ε0 (> 0) is
a sufficiently small real number, x1 and x2 are the positions
of the boundaries in 1D space, and x1 < x2 is assumed.

A result given by the Monte Carlo method generally
has numerical noise caused by random walkers themselves
generating sample paths {X(s)}, where sample paths {X(s)}
described by Eq. (10) are calculated by the second-order
Runge-Kutta scheme in the code. To smooth the Monte
Carlo result, we used the polynomial regression model
based on the Akaike information criterion (AIC) [14] in
this paper. The smoothed temporary solution, which is
differentiable as distinct from the Monte Carlo result it-
self, is expressed as u(k)(0, x) in scheme (i)-(iii). According
to this scheme, a steady-state solution satisfying Eq. (1) is
found iteratively. Note that the above scheme is completely
different from the computational schemes in Refs. [3, 4]
which are based on numerical techniques using a transi-
tion probability of each fluid quantity and its convolution.
The Monte Carlo method in this section is analogous to the
Galerkin method. In our method, however, a temporary so-
lution approximately satisfying Eq. (1) is found directly by
Eq. (9) without any basis function.

3. Benchmarks of DIPS-1D
In this section, we attempt to confirm the validity of

DIPS-1D by using several benchmark tests. First, the fol-
lowing Dirichlet problem (test A) is considered.

(

x3 + 8x2 +
1
2

x
)

d2u
dx2 − (4 + x)

du
dx
− 2(1 + x)u

= 5x(1 − x) − 2x. (12)

The initial and boundary conditions are Φ(x) = 1 − x,
G(t, 0) = 1, and G(t, 1) = 0, where h∗ = 5x(1−x)−2x, η∗ =
−2(1+x), D = x3+8x2+(1/2)x, and U∗ = −(4+x). The so-
lution is given analytically as u(0, x) = 1−(1/2)x−(1/2)x2.
The solution found by DIPS-1D agrees with the analytical
solution, as shown in Fig. 1. When we change h∗ and η∗ in
test A to h∗ = 5x(1 − x) − 2x + 2(1 + x)u(t, x) and η∗ = 0
(test B), the solution found by DIPS-1D also agrees with
the analytical solution, as shown in Fig. 1.

From the result of test B, we find that the term η∗u
can be interpreted as a source (or sink) term in Eq. (9) in
the iterative calculation of a steady-state solution. This nu-
merical technique is especially useful for cases of η∗ > 0
because it suppresses numerical errors in the integrals in
Eq. (9), as shown, for example, in Fig. 2. The control pa-
rameters of the code in Fig. 2 (e.g., the evolutionary time
step, and total number of random walkers, except for the
treatment of h∗ and η∗) are fixed in both cases.

Next, we consider the Burgers equation [15, 16].

∂u
∂t
− u
∂u
∂x
+

D
2
∂2u
∂x2 = 0, (13)

where D/2 = 0.05 is a constant viscosity, and the ini-
tial and boundary conditions are given as Φ(x) = 1 − 2x,
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Fig. 1 Benchmark tests of solving Eq. (12). Dashed black line
represents the analytical solution u(0, x) = 1 − (1/2)x −
(1/2)x2, where the boundary condition is G(t, 0) = 1 and
G(t, 1) = 0. Solid green line represents the initial guess
u(0)(0, x) = Φ(x) = 1 − x. Solid blue and red lines rep-
resent solutions found by DIPS-1D for test A and test B,
respectively. Here, ε < ε0 = 1/200 is satisfied in both
tests.

Fig. 2 Benchmark test of solving d2u(x)/dx2 + π2u(x) = 0
with the initial and boundary conditions u(0)(0, x) =
Φ(x)=−2x + 1, and G(t, 0)= 1, G(t, 1)=−1, respec-
tively. Dashed black line represents the analytical solu-
tion u(0, x) = cos(πx). Solid red line represents the result
when h∗ = −π2u and η∗ = 0, where ε < ε0 = 1/100. Solid
blue line represents the result when h∗ = 0 and η∗ = π2

without smoothing and is a failure in searching for the
solution (ε � ε0 = 1/100).

G(t, 0.025) = 0.95, and G(t, 0.975) = −0.95. Here, t is
replaced by t1 − t in Eq. (13). We find that the steady-state
solution found by DIPS-1D agrees with the analytical so-
lution given approximately as u(0, x) = −0.95 tanh{9.5(x−
0.5)}, as shown in Fig. 3. Thus, the Monte Carlo simulation

Fig. 3 Benchmark test of solving the Burgers equation,
where the boundary condition is G(t, 0.025)= 0.95 and
G(t, 0.975)=−0.95. Solid blue line represents the initial
guess u(0)(0, x) = Φ(x). Solid red line represents the solu-
tion found by DIPS-1D. Dashed black line represents the
analytical solution. Here, ε < ε0 = 1/100 is satisfied.

code DIPS-1D is valid for finding a steady-state solution to
such a nonlinear equation.

Finally, the radial energy transport for electrons [2] is
considered (in the equation below, t is replaced by t1 − t).

∂

∂t

(
3
2

nTe

)

+
1
r
∂

∂r

(

rκgB
e
∂Te

∂r

)

− 3
2
〈σv〉rren2Te + S = 0,

(14)

where the initial condition is given as Φ(r) = u(0)(0, r) =
T (0)

ax −
{
T (0)

ax − T (0)
edge

}
r/a with T (0)

ax = 2 keV and T (0)
edge = 200

eV. The boundary conditions are G(t, r0) = Te(t, r0) =
Te(t, r0 + δr) − δr ∂Te/∂r(t, r0) and G(t, a) = Te(t, a) =
200 eV with sufficiently small δr and r0 (i.e., 0 < δr/a,
r0/a 
 1), Te(t, r0 + δr) = u(k−1)(0, r0 + δr) with k =
1, 2, 3, . . ., and ∂Te/∂r(t, r0) = −1.8 keV/m. Te is the elec-
tron temperature, and the constant density is assumed to
be n = 1 × 1019 m−3. To reduce the computation time,
we employed the gyro-Bohm thermal conductivity κgB

e =

n(Te/eB)(ρe/βqa)(r/R)2 m2/s [17] in the diffusion term of
Eq. (14) instead of the conductivity given by the drift ki-
netic equation of δ f . Here, R = 3 m and a = 1 m are the
major and minor radii, respectively, B is the magnetic field
strength with Bax = 10 T at the axis, ρe is the electron gyro-
radius, β is the beta value, and q = 1/{0.9 − 0.5875(r/a)2}
is the safety factor. We consider the effects of radiative
recombination and the heat source in this benchmark test,
where 〈σv〉rre = 1.27× 10−19(I/Te)3/2/{(I/Te)+ 0.59} m3/s
is the radiative recombination rate coefficient with I = 13.6
eV [18], and S = (5/2){1 − 4(r/a − 1/2)2} kW/m3 is the
heat source. Equation (14) is a nonlinear equation; i.e., κgB

e

and 〈σv〉rre are functions of Te itself.
Note that the boundary condition at r = r0, G(t, r0), is
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Fig. 4 Benchmark test of radial energy transport for electrons
with the boundary condition is G(t, r0) = Te(t, r0 + δr) −
δr ∂Te/∂r(t, r0) and G(t, a) = constant = 200 eV, where
∂Te/∂r(t, r0) = constant = −1.8 keV/m. Dotted black
line represents the initial guess u(0)(0, r) = Φ(r). Dashed
blue line represents the solution found by DIPS-1D at the
temporary step with k = 1 (i.e., the first step), and solid
red line represents the solution at the final step with ε <
ε0 = 1/100.

not constant and is set to satisfy ∂Te/∂r(t, r0) = constant
in this benchmark test; i.e., the boundary condition given
by the derivative ∂Te/∂r is executable in the DIPS-1D
scheme. DIPS-1D is designed to solve Dirichlet prob-
lems, but its iterative scheme renders treatment of Neu-
mann and/or Robin boundary conditions technically feasi-
ble.

The steady-state solution of Eq. (14) is given in Fig. 4.
We confirm that the steady-state solution given by DIPS-
1D in Fig. 4 does not depend on the total number of ran-
dom walkers, the initial guesses, or the random number
sequences, as shown in Figs. 5 and 6. Note that the nu-
merical accuracy of simulation results calculated by Monte
Carlo methods generally depends on the total number of
random walkers. As shown in Fig. 5, the solution at the
final step in Fig. 4 converges sufficiently. In Fig. 6, all the
initial guesses are chosen to be analytic functions that are
not far from the solution at the final step satisfying ε < ε0.
In this paper, pseudo random numbers are generated by
Tausworthe sequences, and physical random numbers are
generated by the physical random number generator on the
supercomputer HITACHI SR16000. The use of physical
random numbers is efficient in the numerical search for an
appropriate steady-state solution and in confirming the in-
dependence of the simulation results from the generated
random numbers because it is extremely rare for the physi-
cal random number generator to generate the same random
number sequence twice in a row. The benchmark tests in
Fig. 6 clearly validate the Monte Carlo method presented
here.

Fig. 5 Dependence of the result at the final step in Fig. 4 on the
total number of random walkers Nrw. Solid red line rep-
resents the solution at the final step if the total number in
Fig. 4 is Nrw = N(0) = 101 000. Dashed black line repre-
sents the solution if Nrw = 4N(0). Here, ε < ε0 = 1/100 is
satisfied in both cases.

Fig. 6 Dependence of the result at the final step in Fig. 4 on the
initial guesses u(0)(0, r) = T (0)

ax − {T (0)
ax − T (0)

edge}r/a with
T (0)

edge = 200 eV and random number generators. Solid red
line represents the solution at the final step if T (0)

ax = 2 keV
(similar to Fig. 4) is applied. Solid black line represents
the solution if T (0)

ax = 2.25 keV. Solid blue line represents
the solution if T (0)

ax = 1.75 keV. In these cases, pseudo
random numbers are used. In contrast, physical random
numbers are used in the following cases. Dashed red line
represents the solution if T (0)

ax = 2 keV. Dashed black line
represents the solution if T (0)

ax = 2.25 keV. Dashed blue
line represents the solution if T (0)

ax = 1.75 keV. In all cases,
ε < ε0 = 1/100 is satisfied.
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4. Summary
In this paper, we develop a new Monte Carlo simu-

lation method for solving fluid equations expressed in the
Fokker-Planck-type form and for calculating the steady-
state solutions. Several benchmark tests, including nonlin-
ear problems in 1D coordinate space, are attempted in the
first trial, and the validity of the computational principle of
the new method for calculating steady-state solutions with-
out any additional special-techniques against nonlinearity
is confirmed. The search for solutions of three fluid quan-
tities (i.e., n, p‖/mn and T , where m is the particle mass) is
not simultaneously executed in this first report on our code
development, and will be described elsewhere in the near
future.

The use of physical random numbers is efficient in the
numerical search for an appropriate solution. The valida-
tion of the Monte Carlo method proposed here is ensured
by using a physical random number generator because of
the outstanding statistical quality of the generated random
numbers. Execution of Eq. (9) by using random walkers
can easily be parallelized and is intrinsically suitable for
parallel computation.

The random walkers can easily follow the details of a
magnetic field line structure, and thus are useful for search-
ing for an appropriate solution in complex magnetic struc-
tures, including magnetic islands and ergodic regions in a
3D magnetic field configuration. We plan to extend DIPS-
1D to a simulation code in 3D space for solving steady-
state transport in edge plasmas. The code in 3D space
can be programmed in the typical Eulerian coordinates and
does not need a particular coordinate system. The compu-
tational principle of the code in 3D space is basically the
same as that of DIPS-1D.
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