
Plasma and Fusion Research: Regular Articles Volume 6, 2401106 (2011)

Efficient Evaluation of Influence Coefficients in Three-Dimensional
Extended Boundary-Node Method for Potential Problems∗)

Taku ITOH, Ayumu SAITOH1), Atsushi KAMITANI2) and Hiroaki NAKAMURA3)

Seikei University, 3-3-1, Kichijoji-Kitamachi, Musashino, Tokyo 180-8633, Japan
1)University of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2280, Japan

2)Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510, Japan
3)National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan

(Received 21 December 2010 / Accepted 14 February 2011)

For the purpose of speed-up of the three-dimensional eXtended Boundary-Node Method (X-BNM), an ef-
ficient algorithm for evaluating influence coefficients has been developed. The algorithm can be easily imple-
mented into the X-BNM without using any integration cells. By applying the resulting X-BNM to the Laplace
problem, the performance of the algorithm is numerically investigated. The numerical experiments show that, by
using the algorithm, computational costs for evaluating influence coefficients in the X-BNM are reduced consid-
erably. Especially for a large-sized problem, the algorithm is efficiently performed, and the computational costs
of the X-BNM are close to those of the Boundary-Element Method (BEM). In addition, for the problem, the
X-BNM shows almost the same accuracy as that of the BEM.
c© 2011 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: boundary-node method, boundary-element method, influence coefficient, integration cell, implicit
function

DOI: 10.1585/pfr.6.2401106

1. Introduction
Potential problems often appear in various fields such

as plasma physics and fusion science. The Boundary-
Element Method (BEM) has been applied to these prob-
lems and has produced many attractive results; however, a
boundary surface must be divided into a set of boundary
elements before the BEM is applied to the problems.

Alternatively, Chati et al. have proposed the
Boundary-Node Method (BNM) [1] as a numerical method
for solving three-dimensional (3D) potential problems. In
contrast to the BEM, the BNM requires only nodes on a
boundary surface. However, the surface must be divided
into a set of integration cells to evaluate surface integrals
such as influence coefficients. Namely, the BNM still has
a concept of boundary elements partly.

To remove integration cells completely, the 3D
BNM has been recently reformulated. The reformulated
method is called the eXtended Boundary-Node Method
(X-BNM) [2]. Although a concept of boundary elements is
no longer included in the X-BNM, the computational costs
of the X-BNM are larger than those of the BEM. The pur-
pose of this study is to develop an efficient algorithm for
evaluation of influence coefficients and to incorporate it to
the 3D X-BNM.

2. Influence Coefficients
As a typical potential problem, we consider a 3D

author’s e-mail: taku@st.seikei.ac.jp
∗) This article is based on the presentation at the 20th International Toki
Conference (ITC20).

Laplace problem. If the X-BNM is applied to the problem,
the influence coefficients, Gi j and Hi j (i, j = 1, 2, . . . ,N),
can be written as

Gi j ≡
∫

S j

w∗(x, xi)φ j(x) dS (x), (1)

Hi j ≡
∫

S j

∂w∗

∂n
(x, xi)φ j(x) dS (x) +

φ j(xi)Ωi

4π
, (2)

where w∗(x, xi) ≡ (4π|x − xi|)−1, and S j is a part of the
boundary surface ∂V contained in a sphere of radius R and
center x j. In addition, φ j(x) denotes a shape function cor-
responding to the jth boundary node x j (j = 1, 2, . . . ,N).
Here, N is the number of boundary nodes, and Ωi is a solid
angle on xi. In the X-BNM, the shape functions are de-
termined by the Moving Least-Squares (MLS) approxima-
tion [1]. Throughout the present study, the MLS approxi-
mation with m = 1 is employed. Here, m is the order of a
complete nominal basis for the MLS approximation.

In the X-BNM, a boundary surface is assumed as an
implicit surface f (x) = 0 [3] and the shape function is
assumed to have a support of radius R. Under the assump-
tions, Gi j and the 1st term of Hi j can be written in the form,

I =
∫

S
F dS . (3)

Here, S denotes a part of the implicit surface Π contained
in a sphere of radius R and center y. Different coordinates
are used for the numerical integration of (3), depending on
whether S contains a singularity z of F(x) or not.

For the case where S does not contain any singularity

c© 2011 The Japan Society of Plasma
Science and Nuclear Fusion Research

2401106-1

Plasma and Fusion Research: Regular Articles Volume 6, 2401106 (2011)

Fig. 1 Local Cartesian coordinate systems. (a) For the case
where S does not contain any singularity of F(x). (b) For
the case where S contains a singularity z of F(x).

of F(x), we use the 3D polar coordinate (ρ, θ, ϕ) whose
origin coincides with the sphere center y. In addition, we
employ a local Cartesian coordinate system 〈y : e′x, e′y, e′z〉
shown in Fig. 1 (a). In this system, e′z is first defined as e′z ≡
∇ f (y)/|∇ f (y)|. After that, e′x is generated by Schmidt’s
orthogonalization. Finally, e′y is defined as e′y ≡ e′z × e′x.
By using the system, an arbitrary point x is expressed by
x = y+ρ(sin θ cosϕ e′x+sin θ sinϕ e′y+cos θ e′z) ≡ g(ρ, θ, ϕ).
Note that, on S , θ is a function of ρ and ϕ, i.e., θ = θ(ρ, ϕ).
This can be easily proved by using the implicit function
theorem. Therefore the vector equation of S is given by
x = g(ρ, θ(ρ, ϕ), ϕ) (0 ≤ ρ ≤ R, 0 ≤ ϕ < 2π). By using the
vector equation, (3) can be rewritten as follows:

I =
∫ 2π

0
dϕ
∫ R

0
dρG(ρ, ϕ), (4)

where G(ρ, ϕ) ≡ ρF(g(ρ, θ, ϕ))
{
[(θρ ρ)2 + 1] sin2 θ + θ2ϕ

}1/2
.

Note that θ(ρ, ϕ) is determined by solving the following
nonlinear equation:

f (g(ρ, θ, ϕ)) = 0. (5)

For the case where S contains z, a slightly differ-
ent coordinate is employed. For this case, we use the
3D polar coordinate (ρ∗, θ∗, ϕ∗) whose origin is z. In ad-
dition, we employ a local Cartesian coordinate system
〈z : e∗x, e∗y, e∗z〉 shown in Fig. 1 (b). Here, e∗x, e∗y and e∗z are
defined in the same manner as e′x, e′y and e′z, respectively.
By using the system, an arbitrary point x is expressed by
x = z + ρ∗(sin θ∗ cosϕ∗e∗x + sin θ∗ sin ϕ∗e∗y + cos θ∗e∗z) ≡
g∗(ρ∗, θ∗, ϕ∗). Therefore the vector equation is given by
x = g(ρ∗, θ∗(ρ∗, ϕ∗), ϕ∗) (0 ≤ ρ∗ ≤ R∗(ϕ∗), 0 ≤ ϕ∗ < 2π).
By using the vector equation, (3) can be rewritten as fol-
lows:

I =
∫ 2π

0
dϕ∗
∫ R∗(ϕ∗)

0
dρ∗G∗(ρ∗, ϕ∗), (6)

where G∗(ρ∗, ϕ∗) is defined in the same manner as G(ρ, ϕ).
Note that the equation ρ∗ = R∗(ϕ∗) representing the edge
of S is determined by solving the nonlinear system:

σ∗1(ρ∗, θ∗) ≡ f (g(ρ∗, θ∗, ϕ∗)) = 0, (7)

σ∗2(ρ∗, θ∗) ≡ |g(ρ∗, θ∗, ϕ∗) − y|2 − R2 = 0. (8)

3. Efficient Evaluation of Gi j and Hi j
3.1 Nonlinear equation (5)

In evaluating influence coefficients Gi j and Hi j, the

Fig. 2 (a) Relation between ϕ∗m and R∗i j(ϕ
∗
m) on S j. (b) Distance

α between xi and a sphere of radius R and center x j along
the positive direction of e∗x.

nonlinear equation (5) is solved many times to determine
θ(ρ, ϕ) on each integration point. For numerical evalua-
tion of Gi j and Hi j, the trapezoid formula and the Gauss-
Legendre quadrature are applied to the ϕ- and ρ-directions,
respectively. Throughout this paper, Nt and Ng denote the
number of integration points for the trapezoid formula and
that for the Gauss-Legendre quadrature, respectively. In
evaluating Gi j and Hi j, the nonlinear equation (5) is nor-
mally solved N2NtNg times. This is because NtNg inte-
gration points are required for evaluating each set of Gi j

and Hi j. It must be noted here that, in evaluating Gi j

and Hi j (i = 1, 2, . . . ,N), integration points do not change
at all. Therefore, the nonlinear equation has only to be
solved NNtNg times before starting evaluation of Gi j and
Hi j. Namely, the computational costs can be reduced con-
siderably.

For solving the nonlinear equation (5), we employ the
Newton method. Let ρn (n = 1, 2, . . . ,Ng) be integration
points of Gauss-Legendre quadrature for the ρ-direction on
S . In addition, let ϕm (m = 1, 2, . . . ,Nt) be (m − 1)Δϕ,
where Δϕ = 2π/Nt . To determine θ(ρ1, ϕm), we set π/2 as
an initial solution of the Newton method. After determin-
ing θ(ρ1, ϕm), we set θ(ρn−1, ϕm) as an initial solution for
determining θ(ρn, ϕm) (n = 2, 3, . . . ,Ng).

3.2 Nonlinear system, (7) and (8)
For solving the nonlinear system, (7) and (8), we also

employ the Newton method. Let ϕ∗m (m = 1, 2, . . . ,Nt) be
(m − 1)Δϕ∗, where Δϕ∗ = 2π/Nt. In addition, let ρ∗(i, j)m =

R∗i j(ϕ
∗
m) (m = 1, 2, . . . ,Nt) be the mth length between xi and

an edge of S j (see Fig. 2 (a)). To obtain initial solutions
(ρ∗(i, j)0 , θ

∗(i, j)
0) of the Newton method for determination of

ρ
∗(i, j)
1 = R∗i j(ϕ

∗
1), we first consider equations: x = xi + α e∗x

and |x − x j|2 = R2. The former equation is obtained by
substituting ρ∗ = α, θ∗ = π/2, ϕ∗ = ϕ∗1 = 0 and z = xi

into x = g∗(ρ∗, θ∗, ϕ∗). The later equation is obtained by
substituting y = x j into (8). From these equations, we
obtain a quadratic equation: α2 + 2 e∗x · (xi − x j) α + |xi −
x j|2 −R2 = 0. The quadratic equation has solutions in case
D ≡ b2 − c ≥ 0 is satisfied, where b = e∗x · (xi − x j) and
c = |xi − x j|2 − R2. The solutions α = −b ± √D indicate
distances between xi and a sphere of radius R and center x j

along e∗x (see Fig. 2 (b)). Note that D ≥ 0 is always satisfied
since xi ∈ S j, that is, xi is inside the sphere. Here, we
adopt ρ∗(i, j)0 = −b+

√
D, and θ∗(i, j)0 is determined by solving

2401106-2

Plasma and Fusion Research: Regular Articles Volume 6, 2401106 (2011)

a nonlinear equation, f (g(ρ∗(i, j)0 , θ
∗(i, j)
0 , ϕ∗1)) = 0. This is

solved by the Newton method with an initial solution π/2.
By using the initial solutions (ρ∗(i, j)0 , θ

∗(i, j)
0), ρ∗(i, j)1 =

R∗i j(ϕ
∗
1) is determined by solving (7) and (8). To deter-

mine R∗i j(ϕ
∗
m) (m = 2, 3, . . . ,Nt), we set (ρ∗(i, j)m−1 , θ

∗(i, j)
m−1) as

initial solutions, respectively. Here, by solving (7) and (8),
θ
∗(i, j)
m (m = 1, 2, . . . ,Nt) are incidentally determined with
ρ
∗(i, j)
m (m = 1, 2, . . . ,Nt), respectively. Note that solutions

(ρ∗(i, j)m , θ
∗(i, j)
m) of the nonlinear system, (7) and (8), may not

converge to appropriate ranges that are 0 ≤ ρ∗(i, j)m ≤ 2R and
0 ≤ θ∗(i, j)m ≤ π. In this case, ρ∗temp = R∗i j(ϕ

∗
m − Δϕ∗/2) and

θ∗temp are determined with initial solutions (ρ∗(i, j)m−1 , θ
∗(i, j)
m−1).

The solutions (ρ∗temp, θ
∗
temp) are used as initial solutions for

redetermining (ρ∗(i, j)m , θ
∗(i, j)
m).

3.3 Algorithm
In the previous subsections, some techniques for

speed-up of the X-BNM are presented. Specifically, an ef-
ficient algorithm for evaluating Gi j and Hi j is summarized
as follows:

1. After integration points ρn (n = 1, 2, . . . ,Ng) in 0 ≤
ρ ≤ R are determined, θ(j)

m,n = θ j(ρn, ϕm) (m =

1, 2, . . . ,Nt, n = 1, 2, . . . ,Ng) are determined on S j (j =
1, 2, . . . ,N) by solving (5). Namely, the following C-
like pseudo code is executed NNtNg times. Note that
θ

(j)
m,0 = π/2 (j = 1, 2, . . . ,N,m = 1, 2, . . . ,Nt).
θ

(j)
m,n = Newton1D(ρn, θ

(j)
m,n−1, ϕm);

Newton1D(ρc, θini, ϕc){
θ is determined by solving (5) with an initial solution
θini on the assumption ρ = ρc and ϕ = ϕc;
return θ;
}

2. Gi j and Hi j (i, j = 1, 2, . . . ,N) are evaluated. A C-like
pseudo code for evaluation of Gi j and Hi j is as follows:
for(j = 1; j ≤ N; ++ j){

for(i = 1; i ≤ N; ++i){
if(xi � S j){

Gi j and Hi j are evaluated by (4) with θ(j)
m,n;

}
else if(xi ∈ S j){

b = e∗x · (xi − x j); c = |xi − x j|2 −R2; D = b2 − c;
Δϕ∗ = 2π/Nt; ρ

∗(i, j)
0 = −b +

√
D;

θ
∗(i, j)
0 = Newton1D(ρ∗(i, j)0 , π/2, ϕ∗1);

for(m = 1; m ≤ Nt; ++m){
(ρ∗(i, j)m , θ

∗(i, j)
m)=Newton2D(ρ∗(i, j)m−1 , θ

∗(i, j)
m−1 , ϕ

∗
m,Δϕ

∗);
R∗i j(ϕ

∗
m) = ρ∗(i, j)m ;

Integration points ρ∗(i, j)m,n (n = 1, 2, . . . ,Ng)
in 0 ≤ ρ∗ ≤ R∗i j(ϕ

∗
m) are determined;

θ
∗(i, j)
m,0 = π/2;

for(n = 1; n ≤ Ng; ++n){
θ
∗(i, j)
m,n = Newton1D(ρ∗(i, j)m,n , θ

∗(i, j)
m,n−1, ϕ

∗
m);

}
}
Gi j and Hi j are evaluated by (6) with θ∗(i, j)m,n ;

}
}
}
Newton2D(ρ∗ini, θ

∗
ini, ϕ

∗
c, Δϕ∗){

(ρ∗, θ∗) are determined by solving (7) and (8) with
initial solutions (ρ∗ini, θ

∗
ini) on the assumption ϕ∗ = ϕ∗c;

if((ρ∗ < 0 || ρ∗ > 2R) || (θ∗ < 0 || θ∗ > π)){
ϕ̂∗ = ϕ∗c − Δϕ∗/2;
(ρ∗, θ∗) = Newton2D(ρ∗ini, θ

∗
ini, ϕ̂

∗, Δϕ∗/2);
}
return (ρ∗, θ∗);
}

4. Numerical Experiments
In this section, the performance of the X-BNM is com-

pared with that of the BEM. To this end, both methods are
applied to a 3D Laplace problem. A boundary is assumed
as f (x) = x2/4 + y2/9 + z2/16 − 1 = 0. The boundary
condition is chosen so that the analytic solution may be
u = 2r̄3P1

3(cos θ̄) cos ϕ̄. Here, (r̄, θ̄, ϕ̄) is a usual 3D po-
lar coordinates and P1

3(x) is the associated Legendre func-
tion. In addition, Dirichlet and Neumann conditions are
assumed on given boundary nodes xk with zk ≥ 0 and
those with zk < 0, respectively. For the shape functions
φi(x) (i = 1, 2, . . . ,N), radii are set so that at least four
nodes may be contained inside the supports. Note that all
the shape functions have the same radius.

For the BEM and the X-BNM, same nodes are em-
ployed. The nodes are uniformly placed on the boundary.
For the BEM, the boundary is divided into a set of triangles
that consist of these nodes. In addition, the linear elements
are adopted for the BEM. For the algorithm described in
Sect. 3.3, we set Nt = 11 and Ng = 5. The linear sys-
tem of the X-BNM and that of the BEM are solved by the
GMRES(k) method [4], where k is the number of restarts
and we set k = 300.

Computations were performed on a computer
equipped with dual 2.8 GHz Quad-Core Intel Xeon
processors, 24 GB RAM, Mac OS X ver. 10.6 and g++
ver. 4.2.1. Note that we used only a single core of the
computer for the computations.

Let us first investigate the dependence of computa-
tional time on the number N of nodes. Fig. 3 (a) shows
the computational time required for evaluation of all influ-
ence coefficients of the X-BNMs and that of the BEM. In
this figure, new and conventional X-BNMs denote the X-
BNMs developed with and without the algorithm described
in Sect. 3.3, respectively. From this figure, we see that the
computational time of the new X-BNM is considerably re-
duced compared with that of the conventional one. How-
ever, the computational time of the new X-BNM is larger
than that of the BEM. Note that, for a relatively large-sized
problem, there is no obvious difference between the com-
putational time of the new X-BNM and that of the BEM.
Hence, by using the proposed algorithm, the computational

2401106-3

Plasma and Fusion Research: Regular Articles Volume 6, 2401106 (2011)

(a)

(b)

Fig. 3 Dependence of the computational time on the number N
of nodes. (a) The computational time required for evalu-
ation of all influence coefficients and (b) The total com-
putational time.

time required for evaluation of all influence coefficients
of the X-BNM is close to that of the BEM for the case
where N is large. In the following, the new X-BNM is
simply called the X-BNM. Fig. 3 (b) shows the total com-
putational time of the X-BNM and that of the BEM. From
this figure, we see that the total computational time of the
X-BNM is about 4 times as large as that of the BEM. How-
ever, Figs. 3 (a) and 3 (b) show that, for the case where N
is large, most of the difference between the total computa-
tional time of the X-BNM and that of the BEM is caused
by a process for solving the linear system. Therefore the
difference between the total computational costs may be
reduced, if a fast solver for the linear system in the X-BNM
is developed.

Next, we investigate accuracy of the X-BNM and
that of the BEM. To this end, we define a rela-
tive error as ε ≡ ‖xe

uq − xn
uq‖2/‖xe

uq‖2, where xe
uq ≡

[ue
1, u

e
2, . . . , u

e
N , q

e
1, q

e
2, . . . , q

e
N]T, and xn

uq ≡ [un
1, u

n
2, . . . , u

n
N ,

qn
1, q

n
2, . . . , q

n
N]T. Here, ue

i and un
i are exact and numerical

solutions of u on xi, respectively. In addition, q ≡ ∂u/∂n,
and qe

i and qn
i are defined the same as ue

i and un
i , respec-

tively. The relative errors of the X-BNM and those of
the BEM are determined as a function of the number N
of nodes and are depicted in Fig. 4. This figure indicates
that, for a relatively large-sized problem, there is no ob-
vious difference between accuracy of the X-BNM and that
of the BEM. Therefore, without using any integration cells,
the X-BNM can show almost the same accuracy as that of
the BEM for the case where N is large.

Fig. 4 Relation between the number N of nodes and the relative
error ε.

5. Conclusion
For the purpose of speed-up of the X-BNM, we have

developed an efficient algorithm for evaluating influence
coefficients. The algorithm can be easily implemented into
the X-BNM without using any integration cells. On the ba-
sis of the algorithm, a numerical code has been developed
for solving a 3D Laplace problem. By means of the code,
the performance of the X-BNM has been investigated nu-
merically. Conclusions obtained in the present study are
summarized as follows:

1) By using the proposed algorithm, computational costs
for evaluating influence coefficients are reduced con-
siderably. In particular, the algorithm is efficiently per-
formed for the case where N is large.

2) Although the total computational time of the X-BNM is
about 4 times as large as that of the BEM, most of the
difference between the total computational time of the
X-BNM and that of the BEM is caused by a process for
solving the linear system for the case where N is large.

3) Without using any integration cells, the X-BNM can
show almost the same accuracy as that of the BEM for
the case where N is large.

In order to reduce the total computational time for the
X-BNM, a fast linear-system solver has to be developed or
selected. On the other hand, for the purpose of improving
the accuracy of the X-BNM, shape functions of the higher-
order MLS approximation should be employed. From the
standpoint of practicability of the X-BNM, these problems
need to be resolved in near future.

Acknowledgment
This work was supported by KAKENHI

(No. 20700098 and No. 22360042) and by the NIFS
Collaboration Research Program (NIFS09KDBN003).

[1] M.K. Chati and S. Mukherjee, Int. J. Numer. Methods Eng.
47, 1523 (2000).

[2] T. Itoh, A. Saitoh, A. Kamitani and H. Nakamura, Plasma
Fusion Res. 5, S2111 (2010).

[3] J. Bloomenthal et al., Introduction to Implicit Surfaces
(Morgan Kaufmann Publishers, Inc., San Francisco, 1997).

[4] Y. Saad and M.H. Schultz, SIAM J. Sci. Stat. Comput. 7,
856 (1986).

2401106-4

