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For the purpose of speed-up of the three-dimensional eXtended Boundary-Node Method (X-BNM), an ef-
ficient algorithm for evaluating influence coefficients has been developed. The algorithm can be easily imple-
mented into the X-BNM without using any integration cells. By applying the resulting X-BNM to the Laplace
problem, the performance of the algorithm is numerically investigated. The numerical experiments show that, by
using the algorithm, computational costs for evaluating influence coefficients in the X-BNM are reduced consid-
erably. Especially for a large-sized problem, the algorithm is efficiently performed, and the computational costs
of the X-BNM are close to those of the Boundary-Element Method (BEM). In addition, for the problem, the
X-BNM shows almost the same accuracy as that of the BEM.
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1. Introduction

Potential problems often appear in various fields such
as plasma physics and fusion science. The Boundary-
Element Method (BEM) has been applied to these prob-
lems and has produced many attractive results; however, a
boundary surface must be divided into a set of boundary
elements before the BEM is applied to the problems.

Alternatively, Chati et al. have proposed the
Boundary-Node Method (BNM) [1] as a numerical method
for solving three-dimensional (3D) potential problems. In
contrast to the BEM, the BNM requires only nodes on a
boundary surface. However, the surface must be divided
into a set of integration cells to evaluate surface integrals
such as influence coefficients. Namely, the BNM still has
a concept of boundary elements partly.

To remove integration cells completely, the 3D
BNM has been recently reformulated. The reformulated
method is called the eXtended Boundary-Node Method
(X-BNM) [2]. Although a concept of boundary elements is
no longer included in the X-BNM, the computational costs
of the X-BNM are larger than those of the BEM. The pur-
pose of this study is to develop an efficient algorithm for
evaluation of influence coeflicients and to incorporate it to
the 3D X-BNM.

2. Influence Coefficients
As a typical potential problem, we consider a 3D
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Laplace problem. If the X-BNM is applied to the problem,
the influence coefficients, G;; and H;; (i, j = 1,2,...,N),
can be written as

G, = fs W, 0) 48 ), (1)

ow* & (x:)8;
H;; = fs ja—v;(x,xi)qﬁj(x)dS(x)+ ! . 2

T

where w*(x, x;) = (4njx — x;))”!, and S is a part of the
boundary surface 0V contained in a sphere of radius R and
center x;. In addition, ¢ ;(x) denotes a shape function cor-
responding to the jth boundary node x; (j = 1,2,...,N).
Here, N is the number of boundary nodes, and £; is a solid
angle on x;. In the X-BNM, the shape functions are de-
termined by the Moving Least-Squares (MLS) approxima-
tion [1]. Throughout the present study, the MLS approxi-
mation with m = 1 is employed. Here, m is the order of a
complete nominal basis for the MLS approximation.

In the X-BNM, a boundary surface is assumed as an
implicit surface f(x) = 0 [3] and the shape function is
assumed to have a support of radius R. Under the assump-
tions, G;; and the 1st term of H;; can be written in the form,

I:deS. 3)
S

Here, S denotes a part of the implicit surface IT contained
in a sphere of radius R and center y. Different coordinates
are used for the numerical integration of (3), depending on
whether S contains a singularity z of F(x) or not.

For the case where S does not contain any singularity
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Fig.1 Local Cartesian coordinate systems. (a) For the case
where S does not contain any singularity of F'(x). (b) For
the case where S contains a singularity z of F(x).

of F(x), we use the 3D polar coordinate (p, 6, ¢) whose
origin coincides with the sphere center y. In addition, we
employ a local Cartesian coordinate system (y : e/, €], e’)
shown in Fig. 1 (a). In this system, e/ is first defined as e =
Vi)/IVf(y)l. After that, e’ is generated by Schmidt’s
orthogonalization. Finally, e;, is defined as e;, =e. xXe,.
By using the system, an arbitrary point x is expressed by
x = y+p(sinfcosp e\ +sinfsinp e +cosbe’) = g(p, 0, ¢).
Note that, on §, 6 is a function of p and ¢, i.e., 8 = 8(p, ¢).
This can be easily proved by using the implicit function
theorem. Therefore the vector equation of S is given by
x = g,000,9),¢) (0 <p<R,0< ¢ <2m). By using the
vector equation, (3) can be rewritten as follows:

27 R
= fo dy fo dpG(p. ). )

where G(p, ¢) = pF(g(p. 0, 9)) {[(6, p)? + 11sin* 6+ 62)' .

Note that 8(p, ¢) is determined by solving the following
nonlinear equation:

f(g(p,6,¢) =0. )

For the case where S contains z, a slightly differ-
ent coordinate is employed. For this case, we use the
3D polar coordinate (p*, 8", ¢*) whose origin is z. In ad-
dition, we employ a local Cartesian coordinate system
(z : e}, e;‘,,e;‘) shown in Fig. 1 (b). Here, e}, e;‘, and e] are
defined in the same manner as e

’ ’

e and e}, respectively.
By using the system, an arbitrary point x is expressed by
X = z+p'(sinf cosyey + sind sing'e) + cost'e;) =
g7 (%, 6", ¢"). Therefore the vector equation is given by
x = 8" 0 (p", ¢"),¢") (0 < p* < R (¢"),0 < ¢" < 2n).
By using the vector equation, (3) can be rewritten as fol-

lows:
21 R (¢")
0 0

where G*(p*, ¢*) is defined in the same manner as G(p, ¢).
Note that the equation p* = R*(¢") representing the edge
of S is determined by solving the nonlinear system:

oi(p*, ) = f(g(p", 6%, ¢") =0, (7)
o0 = g0, 6", ")~y —R* = 0. ®)

3. Efficient Evaluation of G;; and H;;

3.1 Nonlinear equation (5)
In evaluating influence coefficients G;; and H;;, the

(b)
Fig.2 (a) Relation between ¢;, and Rj;(¢;,) on § ;. (b) Distance
a between x; and a sphere of radius R and center x; along

the positive direction of e}.

nonlinear equation (5) is solved many times to determine
6(p, ¢) on each integration point. For numerical evalua-
tion of G;; and H;j, the trapezoid formula and the Gauss-
Legendre quadrature are applied to the ¢- and p-directions,
respectively. Throughout this paper, N; and N, denote the
number of integration points for the trapezoid formula and
that for the Gauss-Legendre quadrature, respectively. In
evaluating G;; and H,;, the nonlinear equation (5) is nor-
mally solved NthNg times. This is because NN, inte-
gration points are required for evaluating each set of G;;
and H;;. It must be noted here that, in evaluating G;;
and H;; (i = 1,2,...,N), integration points do not change
at all. Therefore, the nonlinear equation has only to be
solved NN;N, times before starting evaluation of G;; and
H;;. Namely, the computational costs can be reduced con-
siderably.

For solving the nonlinear equation (5), we employ the
Newton method. Let p, (n = 1,2,...,N,) be integration
points of Gauss-Legendre quadrature for the p-direction on
S. In addition, let ¢, (m = 1,2,...,Ny) be (m — 1)Agp,
where Ap = 27/N;. To determine 6(po, ¢,,), we set /2 as
an initial solution of the Newton method. After determin-
ing 6(p1, ¢m), we set 6(p,—1,¢n) as an initial solution for
determining 6(p,,, ) (n = 2,3,..., N).

3.2 Nonlinear system, (7) and (8)

For solving the nonlinear system, (7) and (8), we also
employ the Newton method. Let ¢;, (m = 1,2,...,N) be
(m — 1)A¢*, where Ap* = 2x/N,. In addition, let p;" =
R;‘j(go,’;) (m=1,2,...,N;)be the mth length between x; and
an edge of S; (see Fig.2(a)). To obtain initial solutions
(p;(i’j), Gg(i’j)) of the Newton method for determination of
pT(i’j) = R;‘j(tp’{), we first consider equations: x = x; + a e}
and |x — x;[> = R®. The former equation is obtained by
substituting p* = @, 6° = n/2, ¢* = ¢} = 0and z = x;
into x = g*(p*, 6%, ¢"). The later equation is obtained by
substituting y = x; into (8). From these equations, we
obtain a quadratic equation: ?+2 e - (xi—x)) a+|x; -
xj|* = R* = 0. The quadratic equation has solutions in case
D = b* — ¢ > 0 is satisfied, where b = €% - (x; — x;) and
¢ = |x; — x;I> - R%. The solutions @ = —b + VD indicate
distances between x; and a sphere of radius R and center x;
along e’ (see Fig. 2 (b)). Note that D > 0 is always satisfied
since x; € S, that is, x; is inside the sphere. Here, we
adopt p; " = b+ VD, and 6" is determined by solving
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a nonlinear equation, f(g(pg(i’j),Gg(i’j),go’]‘)) = 0. This is
solved by the Newton method with an initial solution /2.

By using the initial solutions (pg(i’j),GS(i’j)), pT(i’j) =
R:fj(go’{) is determined by solving (7) and (8). To deter-

mine R:(¢5) (m = 2,3,...,N), we set (o), 6 ag

j m—1°"m
initial solutions, respectively. Here, by solving (7) and (8),
G (m = 1,2,...,N,) are incidentally determined with

pf,f[’j) (m = 1,2,...,N,), respectively. Note that solutions
(0D i)y of the nonlinear system, (7) and (8), may not
converge to appropriate ranges that are 0 < pf,f"j ) <2Rand
0 < 6,,"” < x. In this case, py, = R;;(¢;, — Ap”/2) and
" . ey . #(i,j) i)
Oemp are determined with initial solutions (o, "1, 6, 7).

The solutions (O, Uhemp) are used as initial solutions for

redetermining (pf,fi’j), f,fi"i )).

3.3 Algorithm

In the previous subsections, some techniques for
speed-up of the X-BNM are presented. Specifically, an ef-
ficient algorithm for evaluating G;; and H;; is summarized
as follows:

1. After integration points p, (n = 1,2,...,Ng) in 0 <
p < R are determined, 951,);1 = 0;(On,om) (m =
1,2,...,N,n=1,2,...,N,) are determined on S ; (j =
1,2,...,N) by solving (5). Namely, the following C-
like pseudo code is executed NNN, times. Note that
0y =n/2(j=1.2,....Nom=1,2,....N).

6, = Newton1D(p,, 687, |, @)

NewtonID(pe, Oinis ¢
6 is determined by solving (5) with an initial solution
Oini on the assumption p = p. and ¢ = @;
return 6;

}

2. Gjjand H;; (i,j = 1,2,...,N) are evaluated. A C-like
pseudo code for evaluation of G;; and H;; is as follows:
for(j =15 j < N5 ++)){

for(@i = 1;i < N; ++i){
if(x; ¢ S )1
G;j and H;; are evaluated by (4) with Gf,{?n;
}
else if(x; € S ){
b=e; - (xi—xj);c= |x,'—xj|2 -R:D=0p-c;
Ag* = 2x/N; py" = =b+ VD;
;" = Newton1D(p; ", /2, ¢%);
for(m = 1; m < Ny; ++m){
(om0, ") = Newton2D(p, ", 0,1, 03, A¢");
Ri(p) = pm s
Integration points pf,ff,’lj) n=1,2,...,Ny)
in 0 < p* < R},(g,) are determined;
H;Sf(’)j) =m/2;
for(n = 1; n < Ng; ++n){
O’ = Newton1D(o,5, 617 1);

mn—1°
}

}
Gi; and H;; are evaluated by (6) with 6.+ ;

}
}
}
Newton2D(p: ., €7 ., ¢¢, Ap™){
(0", 6") are determined by solving (7) and (8) with
initial solutions (o} ., 6 .) on the assumption ¢* = ¢;
if((p* <O0llp" > 2R) 1 (0" <Ol 6" > m){
"= —ApT/2;
(0", 0") = Newton2D(p? ., 67 ., ¢*, Ap™ [2);

ini®
}

return (p*, 8%);

4. Numerical Experiments

In this section, the performance of the X-BNM is com-
pared with that of the BEM. To this end, both methods are
applied to a 3D Laplace problem. A boundary is assumed
as f(x) = x2/4 +y*/9 + 22/16 — 1 = 0. The boundary
condition is chosen so that the analytic solution may be
u = 2P Pi(cos@) cos g. Here, (7,6,%) is a usual 3D po-
lar coordinates and Pé(x) is the associated Legendre func-
tion. In addition, Dirichlet and Neumann conditions are
assumed on given boundary nodes x; with z;z > 0 and
those with z; < 0, respectively. For the shape functions
¢i(x) i = 1,2,...,N), radii are set so that at least four
nodes may be contained inside the supports. Note that all
the shape functions have the same radius.

For the BEM and the X-BNM, same nodes are em-
ployed. The nodes are uniformly placed on the boundary.
For the BEM, the boundary is divided into a set of triangles
that consist of these nodes. In addition, the linear elements
are adopted for the BEM. For the algorithm described in
Sect. 3.3, we set Ny = 11 and N; = 5. The linear sys-
tem of the X-BNM and that of the BEM are solved by the
GMRES(k) method [4], where k is the number of restarts
and we set k = 300.

Computations were performed on a computer
equipped with dual 2.8 GHz Quad-Core Intel Xeon
processors, 24 GB RAM, Mac OS X ver. 10.6 and g++
ver. 4.2.1. Note that we used only a single core of the
computer for the computations.

Let us first investigate the dependence of computa-
tional time on the number N of nodes. Fig.3 (a) shows
the computational time required for evaluation of all influ-
ence coefficients of the X-BNMs and that of the BEM. In
this figure, new and conventional X-BNMs denote the X-
BNMs developed with and without the algorithm described
in Sect. 3.3, respectively. From this figure, we see that the
computational time of the new X-BNM is considerably re-
duced compared with that of the conventional one. How-
ever, the computational time of the new X-BNM is larger
than that of the BEM. Note that, for a relatively large-sized
problem, there is no obvious difference between the com-
putational time of the new X-BNM and that of the BEM.
Hence, by using the proposed algorithm, the computational
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Fig. 3 Dependence of the computational time on the number N
of nodes. (a) The computational time required for evalu-
ation of all influence coefficients and (b) The total com-
putational time.

time required for evaluation of all influence coefficients
of the X-BNM is close to that of the BEM for the case
where N is large. In the following, the new X-BNM is
simply called the X-BNM. Fig. 3 (b) shows the total com-
putational time of the X-BNM and that of the BEM. From
this figure, we see that the total computational time of the
X-BNM is about 4 times as large as that of the BEM. How-
ever, Figs. 3 (a) and 3 (b) show that, for the case where N
is large, most of the difference between the total computa-
tional time of the X-BNM and that of the BEM is caused
by a process for solving the linear system. Therefore the
difference between the total computational costs may be
reduced, if a fast solver for the linear system in the X-BNM
is developed.

Next, we investigate accuracy of the X-BNM and
that of the BEM. To this end, we define a rela-

tive error as € = ||x° ¢ =

¢y = XIb/Ix I, where x¢, =
[u?, ug, co, U, cfl’,q;’, .. ,q?V]T, and x,'jq = [u],uy, ... uy,
a1, qy - q“N]T. Here, uf and u are exact and numerical
solutions of u on x;, respectively. In addition, ¢ = du/dn,
and ¢f and ¢! are defined the same as u{ and u, respec-
tively. The relative errors of the X-BNM and those of
the BEM are determined as a function of the number N
of nodes and are depicted in Fig.4. This figure indicates
that, for a relatively large-sized problem, there is no ob-
vious difference between accuracy of the X-BNM and that
of the BEM. Therefore, without using any integration cells,
the X-BNM can show almost the same accuracy as that of

the BEM for the case where N is large.

’ —-O—-X-BNM

Relative Error, &

10° 10° 10
Number of Nodes, N
Fig. 4 Relation between the number N of nodes and the relative

€rror &.

5. Conclusion

For the purpose of speed-up of the X-BNM, we have
developed an efficient algorithm for evaluating influence
coefficients. The algorithm can be easily implemented into
the X-BNM without using any integration cells. On the ba-
sis of the algorithm, a numerical code has been developed
for solving a 3D Laplace problem. By means of the code,
the performance of the X-BNM has been investigated nu-
merically. Conclusions obtained in the present study are
summarized as follows:

1) By using the proposed algorithm, computational costs
for evaluating influence coefficients are reduced con-
siderably. In particular, the algorithm is efficiently per-
formed for the case where N is large.

2) Although the total computational time of the X-BNM is
about 4 times as large as that of the BEM, most of the
difference between the total computational time of the
X-BNM and that of the BEM is caused by a process for
solving the linear system for the case where N is large.

3) Without using any integration cells, the X-BNM can
show almost the same accuracy as that of the BEM for
the case where N is large.

In order to reduce the total computational time for the
X-BNM, a fast linear-system solver has to be developed or
selected. On the other hand, for the purpose of improving
the accuracy of the X-BNM, shape functions of the higher-
order MLS approximation should be employed. From the
standpoint of practicability of the X-BNM, these problems
need to be resolved in near future.
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