Plasma and Fusion Research: Regular Articles

Volume 6, 2401092 (2011)

Effectiveness of GPGPU for Solving the Magnetohydrodynamics
Equations Using the CIP-MOCCT Method*®

Ryosuke UEDA, Yutaka MATSUMOTO, Masafumi ITAGAKI and Shun-ichi OIKAWA
Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
(Received 5 January 2011 / Accepted 22 April 2011)

A simple parallelization approach using General Purpose computation on Graphics Processing Unit was
applied for solving the MHD equations using the CIP-MOCCT method. We investigated the efficiency of this
parallelization approach and found that the computational speed of the modified code is significantly improved

despite the simple modification.

© 2011 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: MHD simulation, CIP method, MOCCT method, GPGPU, parallel computing

DOI: 10.1585/pfr.6.2401092

1. Introduction

A method for the plasma dynamics analysis is numer-
ical simulation by solving the MHD equations. However,
solving them in three dimensions is expensive and requires
excessive computing time; hence, faster processors are re-
quired. Rapid improvement in Central Processing Units
(CPUs) over the last several decades has enabled us to run
larger and more accurate numerical simulations. The re-
sults of these simulations have made great contributions to
plasma and fusion research. The field of numerical sim-
ulation has a high potential for future growth. Recently,
however, there have been few CPU clock speed enhance-
ments. Instead, CPU performance is increased using mul-
tiple processors via the multi-core strategy. This indicates
that further improvements of computing speed are obtained
by parallel computation. Therefore, it will be necessary for
us to employ the multi-core processor technology.

We are interested in using the Graphics Processing
Unit (GPU) as a multi-core processor to perform parallel
computations. The GPU is a multi-core processor devel-
oped for graphics processing and affords massive parallel
computations. In recent years, the high parallel perfor-
mance of the GPU has motivated research outside graphics
processing, i.e., general purpose computation; such tech-
niques are called General Purpose computation on GPU
(GPGPU).

GPGPU has been used in some simulation studies.
In fluid dynamics, Brandvik and Pullan [1] solved two-
dimensional (2D) and three-dimensional (3D) Euler equa-
tions with uniform grids reducing the computational time
by a factor of 29 (2D) and 16 (3D). Elsen et al. [2] solved
3D Euler equations on multi-block meshes. In plasma
physics, Stantchev et al. [3] discussed the efficient imple-
mentation of the particle-in-cell plasma simulation code.

author’s e-mail: ruO4srk@fusion.qe.eng.hokudai.ac.jp
*) This article is based on the presentation at the 20th International Toki
Conference (ITC20).

2401092-1

Wang et al. [4] solved the MHD equations by using an
adaptive mesh finite volume method. However, there are
few studies on the application of GPU for solving the full
MHD equations.

Because the experts in numerical simulations are not
always experts in parallel computation, the approach in-
volving GPGPU must be made simple to use. It is impor-
tant for us to know the efficiency of a simple parallelization
approach for solving numerical simulations. In the present
study, we apply this approach to solve the MHD equations
and investigate its efficiency.

For simple parallelization, an explicit scheme is con-
venient, because the solution of simultaneous equations is
unnecessary. We adopt a combination of the Constrained
Interpolation Profile (CIP) [5], Method of Characteristics
(MOC) [6], and Constrained Transport (CT) methods [7];
we call it the CIP-MOCCT method [8], which is an explicit
scheme. The numerical phase errors of the advection equa-
tion solved by the CIP method are smaller than those pro-
duced by other schemes [9]. In addition, the CIP method
can accurately follow the contact discontinuity and the
boundary between the plasma and vacuum. This method
has been used in a number of hydrodynamic [10] and MHD
simulations [11, 12]. However, as mentioned in [13], the
application of the CIP method to the MHD problems is
difficult because of the traverse mode Alfvén wave and the
divergence-free condition of a magnetic field. Thus, a spe-
cial treatment of the Alfvén wave and the divergence-free
condition is required. The MOCCT method is a standard
technique for treating the Alfvén wave and for satisfying
the divergence-free condition. The CIP-MOCCT method
is not used widely in the field of fusion science, but it has
been employed in several astrophysics studies [14-19]. To
the best of our knowledge, this is the first attempt to apply
GPGPU to the CIP-MOCCT method.

© 2011 The Japan Society of Plasma
Science and Nuclear Fusion Research



Plasma and Fusion Research: Regular Articles

Volume 6, 2401092 (2011)

2. GPGPU and CUDA

Although performance improvements using GPGPU
have been studied [20], GPU is essentially the hardware for
graphics processing. In early studies employing GPGPU,
programmers had to apply their algorithms and data struc-
tures to the graphics programming model, which was not
always straightforward, and hence, in-depth knowledge of
graphics programming was required.

Compute Unified Device Architecture (CUDA) [21]
is the development environment for GPGPU provided by
NVIDIA. as NVIDIA® CUDA™., CUDA makes the de-
velopment of GPU computing applications much easier
and more efficient than earlier attempts of using GPGPU.
CUDA-C is an extension of the C Programming Language
and is easy to learn for programmers with knowledge of C.

3. Implementation of CUDA

To calculate efficiently in CUDA, we have to appro-
priately use the several types of memories on GPU, e.g.,
global memory, shared memory, constant memory, texture
memory and register. In particular, the register and shared
memory accessed via high bandwidths are essential for
higher optimization, although these memories are difficult
to use efficiently. For this reason, the optimization strat-
egy involves the effectively use of these memories. On the
other hand, although the access speed of the global mem-
ory is low, it has much larger memory space and is easier to
program compared with the shared memory. In this study,
a computational code is modified via a simple paralleliza-
tion approach using only the global memory.

In a parallelization approach, we need to find bottle-
necks in the existing code. Such bottlenecks were found
in triple nested loops in our existing 3D MHD simulation
code. In CUDA, the simplest parallelization approach for
these loops is achieved by mapping each array element to
the corresponding thread on the GPU (Fig. 1). This means
that the number of threads invoked on the GPU is equal to
the number of array elements. Because the shared memory
is not used, this approach is not the best for optimization
in terms of the calculation speed. However, it has major
advantages: (i) we can easily modify the existing code and

element of array

/

thread

Fig. 1 Mapping of each array element to the corresponding
thread on the GPU.

List1 Example of existing CPU code

void func(...) {
for(int i = 0; i<NX; ++i) {
for(int j = 0; j<NY; ++j) {
for(int k = 0; k<NZ; ++k) {
// operations for
// each element
ali][j][k]
= b[i][j1[k-11+ ...;

List2 Example of modified code

void func(...) {
func_kernel<<<BLOCKS , THREADS>>>(...);
}

__global__
void func_kernel(...) {
const unsigned int idx
= blockDim.x*blockIdx.x +
threadIdx.x;
if(idx>= NX*NY*NZ) return;
const unsigned int i idx/ (NY*NZ) ;
const unsigned int j (1dx/NZ)%NY;
const unsigned int k 1dx%NZ;

al[idx] = b[IDX(i,j,k-1)] + ...;
}

__device__

unsigned int IDX(int i,int j,int k) {
return NY*NZ*i + NZ*j + k;

}

(ii) it is applicable to other numerical schemes.

List 1 shows the triple nested loop typically used in
the 3D finite difference method in the computation on the
CPU. In List 1, the elements of the 3D array are cal-
culated while incrementing the indices i, j, and k of
the triple nested loop. The modified version of the code
in List 1 is shown in List 2. There are three functions
func, func kernel, and IDX. func is executed on the
CPU and calls func_kernel, which is executed on the
GPU. Variables BLOCKS and THREADS in parentheses, <<<
and >>>, are parameters specifying the number of threads
run on the GPU. In the CUDA architecture, threads are
arranged into threadblocks. BLOCKS and THREADS indi-
cate the number of threadblocks and the number of threads
per threadblock, respectively. The product of BLOCKS and
THREADS is the number of the total threads running on the
GPU. func_kernel is a “kernel function” invoked by the
CPU and runs on the GPU. The processes performed in
each thread are implemented in this kernel. Such kernel
functions require a __global__ qualifier for their defi-
nition. At the beginning of this kernel, the thread index
idx, which indicates the location of the threads, is calcu-

2401092-2



Plasma and Fusion Research: Regular Articles

Volume 6, 2401092 (2011)

lated using built-in variables blockDim, blockIdx, and
threadIdx. The index idx corresponds to the index of the
array. We manipulate the 3D array as the 1D array in List
2. The function IDX is invoked to obtain the index of the
1D array from the index of the 3D array. The __device__
qualifier is required for the functions executed on the GPU.

In the present study, the modifications shown in List
2 have been implemented for all triple nested loops. As a
result, these loops can be parallelized to be computed on
the GPU.

4. MHD Equations and Numerical
Scheme in the Developed Code

4.1 MHD equations

MHD equations in the developed code are expressed
as follows.

%+V'Vp=—pV-V, (D)
a—V+V-VV=1(—VP+J><B+V-<1>), )
ot 0
6P+V VP =—-yPV.-V
ot =77
+(y = 1)(@ : VV +nJ?), 3)
dB
— =-VxE 4
ot X )
E=-VxB+nl, (5)
J=VxB, (6)
V-B=0. @)

Here, p is the density, V the velocity, P the pressure, J the
current density, ® the viscosity stress tensor, B the mag-
netic field, E the electric field, y the ratio of specific heat
and 7 the resistivity.

4.2 CIP method

For fluid dynamics equations (1)-(3), we apply the
CIP method [5], which is an explicit numerical technique
applied to various problems, including fluid dynamics. In
this method, a value and its derivative are treated as in-
dependent physical variables. It enables us to accurately
compute phenomena such as shockwaves, whose values
change sharply in space.

4.3 CT method

The divergence-free condition of magnetic field B
(Eq. (7)) does not appear in the time evolution equations
(Eqgs. (4)-(5)). It is pointed out that even small errors in sat-
isfying the divergence-free condition cause artifacts such
as a non-physical force parallel to the magnetic field [22].
In order to satisfy the above condition, the CT method [7]
is adopted in the developed code.

Other schemes such as the projection scheme [22] re-
quire a Poisson solver. Therefore, we also have to develop
a Poisson solver that can use the GPU. On the other hand,

Fig. 2 Location of the physical variables V, B, and E in the CT
method.

the CT method enables the satisfaction of the divergence-
free condition with the accuracy of the finite difference
method by only defining V, B, and E on the staggered grid
(Fig.2).

4.4 MOC method

To compute the time evolution of B by using Eq. (4),
it is necessary to calculate E from Eq. (5). But in the stag-
gered grid defined by the CT method, the variables of V
and B are not defined at the location of the variables of E.
Thus, it is necessary to interpolate the values of V and B
at the location of the variables of E. However, it is well
known that numerical oscillation in the Alfvén wave prop-
agation is observed when the simple average of V and B
values at the location of the variables of E is used. The
MOC method [6] is used for the stable computation of the
Alfvén wave. From Egs. (1), (2), and (4)-(6), a set of the
characteristic equations are given by,

= R
[% —(Vx— %)%](Vy+ %):0. 9)

These equations show that V;, ¥ B,/ 4/p are constant on the
characteristic lines and that the value of V, and B, at E; are
obtained. In addition, other values of the components of V
and B at the locations of the variables of E are obtained
similarly.

5. Comparison between CPU and

GPU

To evaluate the accuracy of the GPU solution,
we applied both the CPU and GPU codes to a 1D
MHD shock tube problem [23]. The initial condi-
tion for this problem was separated into two uniform
states at the position of x = 0.5. The left state was
(o, P,Vy,Vy, By, By) = (1,1,0,0,0.75, 1) and the right state
was (p, P, V, V,, By, By) = (0.125,0.1,0,0,0.75,-1). We

2401092-3



Plasma and Fusion Research: Regular Articles

Volume 6, 2401092 (2011)

1.2

Density

0 1 1 1 1 1 1 1 1 1

0 0.1 02 03 04 05 06 07 08 09 1

X

Fig. 3 Density profile at t = 0.1. The solid line is the solution of
the CPU code. The squares are the solution of the GPU

code.
Table 1 Specifications of GPU
GPU GTX285% GTX480°
Total numbers of cores 240 480

Total amount of global memory 0.999 GB 1.499 GB
Total amount of shared memory per block 16384 B 49152 B
Total number of registers available per block 16384 32768

Clock rate 1.48GHz 1.40GHz

“NVIDIA Geforce GTX285
bNVIDIA Geforce GTX480

set Ax = 1/200, At = Ax/10, y = 2, and n = 0. The
results at t = 0.1 are shown in Fig.3. It can be seen that
the GPU solution is almost the same as the CPU solution.
Moreover, these results also coincide with Brio-Wu’s re-
sults. This proves the validity of our developed code.

The performance of the modified 3D MHD simula-
tion code using GPU in double precision was evaluated.
The simulation settings were the same as for the above-
mentioned MHD shock tube problem. We evaluated the
CPU time from the start of the time integration (f = 0)
until 100 time steps. Computational times using a CPU
(Intel® Core™ i7, 2.93 GHz) and two GPUs (NVIDIA®
GeForce® GTX 285 and GTX 480) were measured. Al-
though Intel Core i7 is a multi-core processor, the compu-
tational time was measured for the case of using a single
processor. The specifications of the GPUs are shown in
Table 1.

The computational times measured for various mesh
points are summarized in Fig.4. It can be seen that for
this calculation GTX285 is about 13 times faster than the
CPU. Furthermore, GTX480 is about 30 times faster than
the CPU. These results show the effectiveness of our sim-
ple parallelization using the GPU. This means that the im-
provement in speed is independent of the total number of
mesh points (NX X NY X NZ). In addition, these results
are independent of the problems, because the CIP-MOCCT
method is an explicit scheme without a relaxation algo-
rithm.

1.0e+03 T T

CPU(Intel Core i7, single core) —+—
GPU(GeForce GTX285) ===X===
GPU(GeForce GTX480) ==~ %---

1.0e+02

106401 | e 4

Computational time[sec]

x="

1.0e+00 L L
1.0e+05 1.0e+06

Total number of mesh points

Fig. 4 Computational time using a CPU (Core i7) and two GPUs
(GTX285 and GTX480). The horizontal axis is the total
number of mesh points (NX X NY X NZ).

6. Summary and Discussion

We developed an MHD simulation code using the
CIP-MOCCT method and modified it to extend its appli-
cation to the parallel computing code using the GPU. Al-
though we used a simple parallelization approach without
utilizing the shared memory, the computational speed of
the modified code was improved significantly.

The total memory on a GPU is smaller than that on
a CPU. For this reason, increase in the number of mesh
points lead to shortage in the GPU memory space. The use
of multiple GPUs is considered a solution for this problem.
Howeyver, the transfer of data between the CPU and the
GPU or between computers in the multi GPU technique
incurs large costs.

[1] T.Brandvik and G. Pullan, Proc. 48th AIAA Aerospace Sci-
ences Meeting and Exbit, AIAA Press, 2008-607 (2008).

[2] E. Elsen, P. LeGresley and E. Darve, J. Comput. Phys. 227,
10148 (2008).

[3] G. Stantchev, W. Dorland and N. Gumerov, J. Parallel Dis-
trib. Comput. 68, 1339 (2008).

[4] P. Wang, T. Abel and R. Kaehler, New Astronomy 15, 581
(2010).

[5] H. Takewaki, A. Nishiguchi and T. Yabe, J. Comput. Phys.
61, 261 (1985).

[6] J. Hawley and J.M. Stone, Comput. Phys. Commun. 89, 127
(1995).

[7] C.R.Evans and J.F. Hawley, ApJ 332, 659 (1988).

[8] T. Kudoh and K. Shibata, CFD journal 8, 56 (1999).

[9] T. Tajima, Computational Plasma Physics: With Application
to Fusion and Astrophysics (Addison-Wesley, New York,
1989) Chap. 6.

[10] T. Yabe, F. Xiao and T. Utsumi, J. Comput. Phys. 169, 556
(2001).

[11] N. Nishino, J. Plasma Fusion Res. SERIES 6, 395 (2004).

[12] R.Ishizaki and N. Nakajima, J. Plasma Fusion Res. SERIES
8, 995 (2009).

[13] Y. Matsumoto and K. Seki, Comput. Phys. Commun. 179,
289 (2008).

[14] T. Kudoh and K. Shibata, ApJ 476, 632 (1997b).

[15] T. Kudoh, R. Matsumoto and K. Shibata, ApJ 508, 186

2401092-4



Plasma and Fusion Research: Regular Articles Volume 6, 2401092 (2011)

(1998). [20] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone

[16] T. Kudoh, R. Matsumoto and K. Shibata, PASJ 54, 121 and J.C. Phillips, Proceedings of the IEEE 96, 879 (2008).
(2002a). [21] NVIDIA CUDA Programming Guide.

[17] T. Kudoh, R. Matsumoto and K. Shibata, PASJ 54, 267 [22] J.U. Brackbill and D.C. Barnes, J. Comput. Phys. 35, 426
(2002b). (1980).

[18] S.X.Kato, T. Kudoh and K. Shibata, ApJ 565, 1035 (2002). [23] M. Brio and C.C. Wu, J. Comput. Phys. 75, 400 (1988).

[19] Y. Sofue, H. Kigure and K. Shibata, PASJ 57, 39 (2005).

2401092-5



