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A new method has been proposed for implementing essential boundary conditions to the Element-Free
Galerkin Method (EFGM) without using the Lagrange multiplier. Furthermore, the performance of the pro-
posed method has been investigated for a nonlinear Poisson problem. The results of computations show that, as
interpolation functions become closer to delta functions, the accuracy of the solution is improved on the bound-
ary. In addition, the accuracy of the proposed method is higher than that of the conventional EFGM. Therefore,
it might be concluded that the proposed method is useful for solving the nonlinear Poisson problem.
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1. Introduction
The finite element method (FEM) and the boundary

element method (BEM) have been widely used as numer-
ical methods for solving boundary-value problems of par-
tial differential equations. By using these methods, sev-
eral excellent results have been obtained in the fields of
plasma physics and fusion science etc. However, both
FEM and BEM have an inherent demerit: a target region
must be divided into a set of elements before executing the
FEM/BEM code.

In order to resolve the above difficulty, many meshless
approaches have been proposed [1–3]. In the approaches,
elements of a geometrical structure are no longer neces-
sary and, hence, the preparation of input data is extremely
simplified. However, meshless approaches are plagued
by the following difficulty: the method for implementing
the essential boundary condition is different according to
meshless approaches. For example, as the implementation
method, the Lagrange multiplier and the penalty method
are used in the Element-Free Galerkin Method (EFGM) [1]
and the meshless local Petrov-Galerkin method [2], respec-
tively. If a new implementation method of the essential
boundary condition were proposed without dependence on
meshless approaches, the above demerit could be resolved
completely.

The purpose of the present study is to propose a new
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method for implementing the essential boundary condition
to the EFGM and to evaluate the performance of the pro-
posed method by comparing with the conventional method.

2. Element-Free Galerkin Method
2.1 Discretization

Throughout the present study, we consider a two-
dimensional nonlinear Poisson problem:

−Δu = ρ(u), in Ω (1)

u = ū, on ΓD (2)

q ≡ ∂u/∂n = q̄. on ΓN (3)

Here,Ω denotes a region bounded by a simple closed curve
∂Ω that satisfies the following relation: ΓD ∪ ΓN = ∂Ω and
ΓD ∩ ΓN = φ. Furthermore, ρ(u), ū and q̄ are the known
functions in Ω, on ΓD and on ΓN, respectively. In addition,
n indicates an outward unit normal on ∂Ω.

Since the inhomogeneous term ρ(u) has a nonlinear
dependence on the dependent variable u, the solution u
is easily calculated by using the successive substitution
method. In the kth step, we solve the following linear prob-
lem for u(k+1):

−Δu(k+1) = ρ(u(k)), in Ω (4)

u(k+1) = ū, on ΓD (5)

q(k+1) = q̄, on ΓN (6)

where the superscript (k) is an iteration number label.
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The above step is repeated until the termination condition
||u(k+1) − u(k)||/||u(k+1)|| ≤ 10−10 is satisfied.

After straightforward calculations, the above linear
problem is shown to be equivalent to the following weak
form:

∀w
∣∣∣
ΓD
= 0 :

�
Ω

∇w · ∇u(k+1) d2x

=

�
Ω

w ρ(u(k)) d2x +
∫
ΓN

w q̄ d�. (7)

In the conventional EFGM, the essential boundary condi-
tion (5) needs to be incorporated into the weak form (7)
through the Lagrange multiplier. As a result, we can ob-
tain

∀w,∀δλ(k+1) :
�
Ω

∇w · ∇u(k+1) d2x

−
�
Ω

w ρ(u(k)) d2x −
∫
ΓN

w q̄ d�

+

∫
ΓD

δλ(k+1) [u(k+1) − ū
]

d� +
∫
ΓD

w λ(k+1) d� = 0,

(8)

where λ(k+1) is the Lagrange multiplier.
In order to discretize (8), let us first place

x1, x2, · · · , xN in Ω. Furthermore, xN+1, xN+2, · · · , xN+M

are placed on ∂Ω. Next, we define the shape functions φi’s
which are assigned to the nodes xi’s by using a moving
least-square (MLS) approximation [1]. Finally, both u(k+1)

and w are assumed to be contained in the functional space
V ≡ span (φ1, φ2, · · · , φN), i.e., u(k+1) and w are assumed as

u(k+1) (x) =
N+M∑
i=1

φi (x) û(k+1)
i , (9)

w (x) =
N+M∑
i=1

φi (x) ŵi, (10)

where û(k+1)
i and ŵi (i = 1, 2, · · · ,N + M) are con-

stants. On the other hand, both λ(k+1) and δλ(k+1) are
assumed to be contained in the functional space W ≡
span (N1,N2, · · · ,NM), i.e., λ(k+1) and δλ(k+1) can be ex-
pressed as

λ(k+1) (s) =
M∑

i=1

Ni (s) λ̂(k+1)
i , (11)

δλ(k+1) (s) =
M∑

i=1

Ni (s) δλ̂(k+1)
i , (12)

where Ni(s) is an interpolation function and s is the ar-
clength along ∂Ω. In addition, λ̂(k+1)

i and δλ̂(k+1)
i (i =

1, 2, · · · ,M) are constants.
Under the above assumptions, (8) is discretized as

[
A B

BT O

] [
û(k+1)

λ(k+1)

]
=

[
f (k)

g

]
. (13)

Here, matrices A and B are defined by

A =
N+M∑
i=1

N+M∑
j=1

(�
Ω

∇φi · ∇φ j d2x
)

ei eT
j , (14)

B =
N+M∑
i=1

M∑
j=1

(∫
ΓD

φi N j d�
)

ei eT
j , (15)

and nodal vectors, û(k+1) and λ(k+1), correspond to u(k+1)

and λ(k+1), respectively. In addition, f (k) and g are defined
as follows:

f (k)=

N+M∑
i=1

(�
Ω

φi ρ(u(k)) d2x+
∫
ΓN

φi q̄ d�
)

ei, (16)

g=
M∑

i=1

(∫
ΓD

Ni(s) ū d�
)

ei. (17)

As is apparent from (13), we can obtain the numerical so-
lution by solving the linear system iteratively. In this way,
the nonlinear Poisson problem is reduced to the problem in
which (13) is solved repeatedly until the termination con-
dition is fulfilled.

2.2 Shape function
As mentioned in 2.1, we must determine shape func-

tions assigned to all nodes. In the EFGM, the shape func-
tions φ j (x) ( j = 1, 2, · · · ,N + M) are defined by means of
the MLS approximation and its explicit form are expressed
as follows:

φ j(x) = p(x)TC−1(x) b j(x), (18)

where C(x) and b j(x) are given by

C(x) =
N+M∑
j=1

w

⎛⎜⎜⎜⎜⎜⎝
∣∣∣x − x j

∣∣∣
R

⎞⎟⎟⎟⎟⎟⎠ p(x j) p(x j)T , (19)

b j(x) = w

⎛⎜⎜⎜⎜⎜⎝
∣∣∣x − x j

∣∣∣
R

⎞⎟⎟⎟⎟⎟⎠ p(x j). (20)

Moreover, w(r) and R denote a weight function and its sup-
port radius, respectively. In addition, p(x) is defined by

p(x)T =
[
1, x, y

]
. (21)

Several weight functions have been proposed so far
[1]. In this study, we adopt the spline-type function [4]:

w(r) =

⎧⎪⎪⎨⎪⎪⎩
1 − 6 r2 + 8 r3 − 3 r4 ; r ≤ 1,

0 ; r > 1.
(22)

3. Extended Element-Free Galerkin
Method
In the conventional EFGM, the essential boundary

condition (5) has been incorporated into the weak form (7)
through the Lagrange multiplier. In this section, we ex-
plain a new method for implementing the essential bound-
ary condition to the EFGM without using the Lagrange
multiplier.
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Fig. 1 Graphs of Ψ1(ξ) and Ψ2(ξ).

Let us first discretize the essential boundary condition
(5). Obviously, (5) can be equivalent to the expression:∫

ΓD

v(s)
[
u(k+1) − ū

]
d� = 0, (23)

for ∀v. When v is assumed to be contained in the functional
space W, we get

v (s) =
M∑

i=1

Ni (s) v̂i, (24)

where v̂i (i = 1, 2, · · · ,M) are all constants. By using (24),
(23) can be discretized as

BT û(k+1) = g. (25)

Next, the weak form (7) can be similarly discretized as

∀ŵ s.t. Bw = 0 : wT [Aû(k+1) − f (k)] = 0,

⇔∃λ(k+1) ∈ RM : Aû(k+1) − f (k) = Bλ(k+1). (26)

By combining (25) with (26), we can get the linear
system (13). In this way, the nonlinear Poisson problem
can be transformed to the linear system (13) without us-
ing the Lagrange multiplier. Throughout the present study,
the above method is called the eXtended Element-Free
Galerkin Method (X-EFGM).

As mentioned above, v is an arbitrary function. There-
fore, Ni(s) can be selected arbitrarily. For example, if
Ni(s) is given by the Lagrange interpolant, the X-EFGM
becomes equivalent to the conventional EFGM. For cal-
culating integrals easily, we adopt a dimensionless vari-
able ξ. By using ξ, Nσ(e, j)(ξ) is defined by Nσ(e, j)(ξ) =(
2/δ̄ le

)
Ψ j(ξ) (see Fig. 1). Here, σ(e, j) and le are the global

number of the jth local node in the eth integration cell and
the length of eth integration cell, respectively.

4. Numerical Results
In this section, we investigate the performance of

the X-EFGM by comparing with the conventional EFGM.
Throughout the present study, the target region Ω is given
by Ω ≡ (0, π/2) × (0, π/2) and ρ(u) is assumed as ρ(u) =(
u−3 + u

)
/2. Obviously, the analytic solution of the non-

linear Poisson problem is given by u =
√

sin (x + y). Fur-
thermore, we adopt a particular solution of −Δu = 0 as the
initial solution u(1) and its explicit form is written as

u(1) = − cosh x sin y + cos x sinh y. (27)

Fig. 2 The spatial distribution of the nodes, x1, x2, · · · , xN+M .
Here, the symbol, •, denotes the nodes.

Fig. 3 Dependence of the relative error ε on the constant γ for
the case with the EFGM. Here, � : N + M = 81 and
� : N + M = 529.

After we divide Ω into K equal parts along not only the
x-direction but also the y-direction, all grid points are
adopted as the nodes (see Fig. 2). Furthermore, the support
radius R is fixed as R = γ

(
π/
√

2K
)

where γ is a constant.
The relative errors are calculated for the case with EFGM,
and they are plotted as functions of γ in Fig. 3. We see from
this figure that the relative errors decrease monotonously
with an increase in γ until γ ≈ 1. After that, the relative
errors are almost constant regardless of γ. This tendency
does not depend on the total number of nodes. From the
above results, we might say that the appropriate value of γ
is γ ≈ 1. Throughout this study, γ is fixed as γ = 1.2.

First, we investigate the influence of Ni(ξ) on the ac-
curacy of the X-EFGM for the Dirichlet problem. As the
measure of the accuracy, we adopt the relative error defined
by

εB =

√∫
∂Ω

[
u (x(s)) − ū

]2 d�√∫
∂Ω

ū2 d�
. (28)

The relative error is calculated as a function of the di-
mensionless support radius δ̄ and is depicted in Fig. 4.
We see from this figure that the relative error decreases
monotonously with a decrease in δ̄. This tendency does
not depend on the total number N+M of nodes. The above
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Fig. 4 Dependence of the relative error εB on the dimensionless
support radius δ̄ for the case with γ = 1.2. Here, �: N +
M = 81 and �: N + M = 529.

result shows that the accuracy of the X-EFGM is consider-
ably improved for the case with Ni(ξ) ≈ δ(ξ − ξi). For this
reason, hereafter, Ni(ξ) is fixed as Ni(ξ) = δ(ξ − ξi).

By comparing with the conventional EFGM, let us in-
vestigate the accuracy of the X-EFGM. As the measure of
the accuracy of the numerical solution, we adopt the error:

εD(x) ≡
∣∣∣uA(x) − uN(x)

∣∣∣
Max

x

∣∣∣uA(x)
∣∣∣ , (29)

where subscript notations, A and N, are analytic and nu-
merical solutions, respectively. Typical examples of the
error distribution are shown in Figs. 5 (a) and 5 (b). We see
from these figures that the accuracy of the X-EFGM is al-
most higher than that of the conventional EFGM in Ω. In
particular, the accuracy is improved in the vicinity of y = x.

Next, we investigate the influence of the total number
of nodes on both the accuracy of the X-EFGM and that of
the conventional EFGM. The relative errors are calculated
as a function of N + M and are depicted in Fig. 6. We see
from this figure that the relative errors are almost propor-
tional to (N + M)−β among all methods and that the power
indices β’s satisfy β ≈ 1.2 and β ≈ 1.1 for the X-EFGM
and the EFGM, respectively.

Finally, we investigate the calculation speed of the X-
EFGM. To this end, the ratio τX/τE of the CPU time is cal-
culated as a function of N + M and is depicted in the inset
of Fig. 6. Here, τX is the CPU time reguired for the X-
EFGM, whereas τE is that for the conventional EFGM. We
see from this figure that τX/τE is almost constant regard-
less of N +M. This means that the calculation speed of X-
EFGM is almost equal to that of the conventional EFGM.

From these results, it might be concluded that the X-
EFGM is useful for solving the nonlinear Poisson problem.

5. Conclusion
By using a new method for implementing the essen-

tial boundary condition to the EFGM, we have developed
the X-EFGM. In addition, we have investigated its perfor-
mance by comparing with the conventional EFGM. Con-

(a) (b)

Fig. 5 The error distribution for the case with (a) the conven-
tional EFGM and (b) the X-EFGM (N + M = 121, γ =
1.2).

Fig. 6 Dependence of the relative error ε on the total number
N + M of nodes (γ = 1.2). Here, the symbols, � and �
indicate the values for the X-EFGM and the conventional
EFGM, respectively. The inset shows the dependence of
the ratio τX/τE on the total number N + M of nodes.

clusions obtained in the present study are summarized as
follows.

1. When the value of δ̄ decreases, the accuracy of the nu-
merical solution is drastically improved on the bound-
ary.

2. The accuracy of the X-EFGM is higher than that of
the conventional EFGM. Furthermore, the calculation
speed of X-EFGM is almost equal to that of the con-
ventional EFGM.
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