
Plasma and Fusion Research: Regular Articles Volume 6, 2401074 (2011)
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By directly discretizing the weak form used in the finite element method, meshless methods have been
derived. Neither the Lagrange multiplier method nor the penalty method is employed in the derivation of
the methods. The resulting methods are divided into two groups, depending on whether the discretization is
based on the Galerkin or the Petrov-Galerkin approach. Each group is further subdivided into two groups,
according to the method for imposing the essential boundary condition. Hence, four types of the meshless
methods have been formulated. The accuracy of these methods is illustrated for two-dimensional Poisson
problems.
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1. Introduction
The finite element method (FEM) has been applied

to various fields in fusion engineering and plasma physics
and, consequently, it has produced a number of fruitful re-
sults. Before using a numerical code based on the FEM, a
region must be divided into a set of finite elements. The el-
ements are introduced not only for the approximation of
the region shape but also for the definition of the inter-
polants. In other words, the method for representing the
geometric shape is closely related to the basis functions in
the FEM. However, it is this relation that complicates the
input data for a FEM code.

In order to resolve these difficulties of the FEM,
many types of meshless methods have been so far pro-
posed [1–6]. Among them, the Element-Free Galerkin
(EFG) method [2] and the Meshless Local Petrov-Galerkin
(MLPG) method [3] are most widely applied to numerical
simulations. The major differences between both meth-
ods are listed as follows: the implementation method of
essential boundary condition and selections of the func-
tion spaces containing test/trial functions. As the imple-
mentation method, the Lagrange multiplier method and the
penalty method are adopted in the EFG and the MLPG, re-
spectively.

Our earlier work [6] shows that, if the essential bound-
ary condition is incorporated to the weak form by using the
penalty method, the resulting algebraic equations become
ill-conditioned. On the other hand, the Lagrange multi-
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plier cannot be compatible with the Petrov-Galerkin ap-
proach. Thus, for the purpose of unifying the EFG and the
MLPG, neither the penalty method nor the Lagrange mul-
tiplier method can be used for implementing the essential
boundary condition.

The purpose of the present study is to formulate the
meshless Galerkin/Petrov-Galerkin approach without us-
ing the penalty method or the Lagrange multiplier method.
To this end, the weak form and the essential boundary con-
dition are separately discretized and, subsequently, the ma-
trix equation is derived by means of the concept of an or-
thogonal complement.

2. FEM-Type Weak Form
For simplicity, we consider the following two-

dimensional (2D) Poisson problem on the domain Ω
bounded by a simple closed curve ∂Ω:

−∇2u = p in Ω, (1)

u = ū on ΓD, (2)
∂u
∂n
= q̄ on ΓN, (3)

where ΓD and ΓN are parts of ∂Ω such that ΓD ∪ ΓN = ∂Ω

and ΓD ∩ ΓN = φ. In addition, n denotes an outward unit
normal on ∂Ω. Furthermore, the superposed bar indicates
prescribed boundary values and p(x) is a given function on
Ω. Although the 2D Poisson problem is used to demon-
strate the formulation of meshless methods, the discretiza-
tion procedure used in the present study is applicable to
general boundary-value problems.

After a straightforward calculation, we can prove that
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the above Poisson problem is equivalent to the variational
problem of the functional,

I[u, λ] ≡
�
Ω

(
1
2
|∇u|2 − pu

)
d2x −

∫
ΓN

q̄u ds

+

∫
ΓD

λ(u − ū) ds. (4)

Here, λ(s) is the Lagrange multiplier that is a function of
an arclength s along ΓD. From the stationarity condition
of the functional I[u, λ] with respect to u and λ, we get the
following weak form:

∀δu ∀δλ : J[δu,u]

+

∫
ΓD

δλ(u − ū) ds +
∫
ΓD

δuλ ds = 0, (5)

where J[w, u] is the functional defined by

J[w, u] ≡
�
Ω

∇w · ∇u d2x −
�
Ω

wp d2x

−
∫
ΓN

w q̄ ds.

Since δu and δλ are variations of the functions u and λ,
respectively, both u and δu must be contained in the same
function space and, similarly, both λ and δλ must be also
contained in the same function space. In this sense, not the
Petrov-Galerkin but the Galerkin approach can be applied
to the discretization of (5). In fact, Belytscheko [2] formu-
lated the EFG method by discretizing (5) with the Galerkin
approach. However, in order to solve the Poisson problem
by means of the Petrov-Galerkin approach, we have to start
a considerably different weak form.

As is well known, both (1) and (3) are satisfied if and
only if the following weak form is fulfilled:

∀w s.t. w |ΓD = 0 : J[w, u] = 0. (6)

Here, ∀w s.t. w |ΓD = 0 denotes an arbitrary function w (x)
that satisfies w = 0 on ΓD. Note that (6) includes not the
essential boundary condition but the natural one. In the
following, (6) is referred as to the FEM-type weak form.
In the next section, we derive the meshless methods by
applying the Galerkin/Petrov-Galerkin approach to (6).

3. Meshless Methods
In this section, the FEM-type weak form (6) is dis-

cretized with both the weight functions and the shape func-
tions of the moving least-squares (MLS) approximation
[1–3]. To this end, the nodes, x1, x2, · · · , xN , are placed
in Ω ∪ ∂Ω and, subsequently, the weight function wi(x)
with a compact support is assigned to the ith node xi.
By using the weight functions, the shape functions φi(x)
(i = 1, 2, · · · ,N) can be determined. In the following,
the number of nodes on ΓD is denoted by K. In addi-
tion, {e∗1, e∗2, · · · , e∗N } and {e1, e2, · · · , eK} are the orthonor-
mal system of the N-dimensional vector space and that
of the K-dimensional vector space, respectively. Also, let
{ψ1(x), ψ2(x), · · · , ψN(x)} be a set of linearly independent
functions on Ω.

3.1 Discretization
In order to discretize (6), the test function w(x) and

the trial function u(x) are assumed as

w (x) =
N∑

i=1

ŵiψi(x), u(x) =
N∑

i=1

ûiφi(x). (7)

After substituting (7) into J[w, u] = 0, we get

(ŵ,Aû − f ) = 0, (8)

where ŵ and û are defined by

ŵ =
N∑

i=1

ŵi e∗i , û =
N∑

i=1

ûi e∗i .

In addition, A and f are given by

A =
N∑

i=1

N∑
j=1

�
Ω

∇ψi · ∇φ j d2x e∗i e∗j
T ,

f =
N∑

i=1

(�
Ω

ψi p d2x +
∫
ΓN

ψiq̄ ds
)

e∗i .

As is apparent from (6), the constraint w |ΓD = 0 is im-
posed on the test function w (x). Next, let us derive the dis-
cretized form of the constraint. To this end, the constraint
is rewritten as the equivalent proposition:

∀β(s) :
∫
ΓD

β(s)w (x(s)) ds = 0. (9)

Let {N1(s),N2(s), · · · ,NK(s)} be a set of linearly indepen-
dent functions on ΓD. Then, the above proposition can be
discretized as

(ŵ, cp) = 0 (p = 1, 2, · · · ,K), (10)

where N-dimensional vectors cp’s are defined by

cp ≡
N∑

i=1

∫
ΓD

ψi(x(s))Np(s) ds e∗i .

Apparently, (10) indicates that ŵ is contained in the or-
thogonal complement of V = span(c1, c2, · · · , cK). Hence,
the FEM-type weak form (6) can be discretized as

∀ŵ ∈ V⊥ : (ŵ,Aû − f ) = 0.

The above equation means that Aû − f ∈ (V⊥)⊥ = V . In
other words, there exists a K-dimensional vector v̂ such
that

Aû + Cv̂ = f , (11)

where C ≡ [c1 c2 · · · cK].
Finally, the essential boundary condition (2) is dis-

cretized. By using the similar method used for the con-
straint w |ΓD = 0, we obtain

DT û = g, (12)

where D and g are given by
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D =
N∑

i=1

K∑
p=1

∫
ΓD

φi(x(s))Np(s) ds e∗i eT
p ,

g =
K∑

p=1

∫
ΓD

Np(s)ū(s) ds ep.

Equations (11) and (12) can be written in the form,[
A C

DT O

] [
û
v̂

]
=

[
f
g

]
. (13)

It is (13) that is the discretized form of the Poisson prob-
lem. Especially for the case with ψi(x) = wi(x) (i =
1, 2, · · · ,N), the coefficient matrix in (13) becomes asym-
metric. For this case, the resulting meshless method is
called the Element-Free Petrov-Galerkin (EFPG) method.
On the other hand, for the case with ψi(x) = φi(x) (i =
1, 2, · · · ,N), the coefficient matrix becomes symmetric
and (13) coincides with the matrix equation for the EFG
method [2]. In this sense, the above method is a complete
extension of the EFG method.

3.2 Selection of functions Np’s
As mentioned above, linearly independent functions

Np’s are required for the discretization of the essential
boundary condition. As the functions, Lagrange inter-
polants [2] and boundary-element shape functions [6] have
been so far employed. However, even if these functions are
adopted for Np’s, the essential boundary conditions are not
exactly satisfied on the boundary nodes. In fact, the fol-
lowing equations are only fulfilled:∫

ΓD

Np(s)(u − ū) ds = 0 (p = 1, 2, · · · ,K). (14)

In order to exactly enforce the essential boundary con-
ditions on the boundary nodes, we propose that δ-functions
of an arclength s be used for Np’s. For this case, the ex-
plicit forms of Np(s)’s can be written as

Np(s) = δ(s − sp) (p = 1, 2, · · · ,K), (15)

where sp denotes an arclength to the pth boundary
node. Note that the substitution of (15) into (14) yields
u(x(sp)) = ū(sp). Hence, the essential boundary condi-
tions are exactly satisfied on the boundary nodes. In ad-
dition, the vector g and the matrices, C and D, are given
by

g =
K∑

p=1

ū(sp) ep,

C =
N∑

i=1

K∑
p=1

ψi(x(sp)) e∗i eT
p ,

D =
N∑

i=1

K∑
p=1

φi(x(sp)) e∗i eT
p .

Thus, if (15) is used for the discretization of the essential
boundary condition, g, C and D can be easily evaluated

without using any numerical integrations. For example,
the (i, p)th element of C and the pth component of g are
calculated as Cip = ψi(x(sp)) and gp = ū(sp), respectively.

In the following, the EFG and the EFPG with (15) as
Np’s are referred to as the collocation EFG and the col-
location EFPG, respectively. In contrast, the EFG and the
EFPG with conventional Np(s)’s are referred to as the stan-
dard EFG and the standard EFPG, respectively.

4. Performance Evaluation
A numerical code for solving the 2D Poisson problem

has been developed on the basis of four types of mesh-
less methods: the standard EFG, the standard EFPG, the
collocation EFG and the collocation EFPG. In the present
section, the accuracy of these methods is investigated by
use of the code. As the measure of the accuracy, we use
the relative error defined by ε ≡ ‖uN − uA‖/‖uA‖, where uN

and uA are the numerical and the analytic solutions, respec-
tively, and the maximum norm is adopted for the definition
of ‖ ‖.

Throughout the present section, the domain Ω is as-
sumed as Ω = (0, 1) × (0, 1) and the given functions, ū, q̄
and p, are determined so that the analytic solution of the
2D Poisson problem may be u = exp[−(x2 + y2)]. Also,
only the Dirichlet problem is solved throughout the present
section.

The nodes are uniformly placed in Ω. Moreover, in
the MLS approximation, a linear basis pT (x) = [1 x y]
and the exponential-type weight function are assumed. The
explicit form of the weight function is given by

wi(x) = ω(|x − xi|),

ω(r) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

exp[−(r/c)2] − exp[−(R/c)2]
1 − exp[−(R/c)2]

(r ≤ R)

0 (r > R),

where R denotes a support radius and c is a constant. In the
present study, the value of c is assumed to be equal to the
minimum distance h between two nodes.

By using the above weight functions wi’s, the shape
functions φi’s [1–3] can be determined by

φi(x) = pT (x)M−1(x)bi(x).

Here, the matrix M(x) and the vector bi(x) are given by

M(x) =
N∑

i=1

wi(x)p(xi)pT (xi),

bi(x) = wi(x)p(xi).

Note that, for the EFPG method, the weight functions wi’s
are chosen as ψi’s. On the other hand, the shape functions
φi’s are adopted as ψi’s for the EFG method.

Let us first investigate the influence of the support ra-
dius on the accuracy of the meshless methods. To this end,
the dependence of the relative error on the support radius
is numerically determined for the standard EFG/EFPG and
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(a)

(b)

Fig. 1 Dependence of the relative error ε on the support radius
R. Here, (a) N = 441 and (b) N = 1681.

the results of computations are depicted in Figs. 1 (a) and
1 (b). We see from these figures that the relative error de-
creases with R/h until it becomes almost constant above
a certain limit of R/h. In addition, the limit does not de-
pend on the type of meshless methods but on the number of
nodes. Since only the problems with N < 3000 are solved
in the present study, the value of R/h is fixed as R/h = 2.5,
hereafter.

Next, we investigate how the accuracy of the meshless
methods is affected by the functions Np’s. For this purpose,
the relative error of the standard/collocation EFG is calcu-
lated as functions of the number of nodes and is depicted
in Fig. 2. The convergence rate of the collocation EFG is
equal to that of the standard EFG for N < 1700, whereas
it slightly decreases with N for N > 1700. The similar
tendencies are also observed for the standard/collocation
EFPG (see Fig. 3). The convergence rate of the standard
EFPG takes a constant value. On the other hand, the
convergence rate of the collocation EFPG is constant for
N < 1700 and it slightly diminishes for N > 1700. Fur-
thermore, Figs. 2 and 3 also show that the accuracy of the
collocation meshless method is superior to that of the stan-
dard meshless method. From these results, we can con-

Fig. 2 The relative error ε as functions of the number N of
nodes. Here, the Poisson problem is solved by means
of either the standard EFG or the collocation EFG.

Fig. 3 The relative error ε as functions of the number N of
nodes. Here, the Poisson problem is solved by means
of either the standard EFPG or the collocation EFPG.

clude that the collocation method is considerably effective
for incorporating the essential boundary conditions into the
EFG and the EFPG.

5. Conclusion
Without using the Lagrange multiplier method or the

penalty method, we have formulated the meshless meth-
ods successfully. As the method for imposing the essential
boundary conditions, not only the standard method but the
collocation method is employed. As a result, four types of
the meshless methods are derived: the standard EFG, the
collocation EFG, the standard EFPG and the collocation
EFPG. On the basis of these four methods, a numerical
code has been developed for solving the 2D Poisson prob-
lem. By use of the code, the accuracy of these meshless
methods is investigated numerically. Conclusions obtained
in the present study are summarized as follows.

1) The accuracy of four kinds of meshless methods is
considerably improved with an increase in the support
radius.
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2) From the standpoint of the accuracy, the collocation
meshless method is superior to the standard one.
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